TCP 为什么是三次握手,而不是两次或四次?
记得第一次看TCP握手连接的时候,有同样的疑问,我的疑问是,为何不是两次呢?
后来随着对网络的理解深入,明白TCP报文是交由IP网络来负责运输,IP网络并不能保证TCP报文到达目的地,既然IP网络是指望不上了,那TCP就自力更生吧,TCP必须依赖自身的努力来保证数据传输的可靠。
TCP看似复杂,其实可以归纳为以下5种报文:
(1) SYN
(2) Data (唯一携带用户数据)
(3) FIN
(4) Reset
(5) ACK
其中1、2、3分别为建立连接、数据传输、断开连接,这三种报文对方接收到一定要ACK确认,为何要确认,因为这就是可靠传输的依赖的机制。如果对方在超时时间内不确认,发送方会一直重传,直到对方确认为止、或到达重传上限次数而Reset连接。
4、5 为重置连接报文、确认ACK报文,这两种报文对方接收到要ACK确认吧?不需要!自然发送方也不会重传这2种类型的报文。
为何Reset报文不需要ACK确认?
因为发送Reset报文的一端,在发送完这个报文之后,和该TCP Session有关的内存结构体瞬间全部释放,无论对方收到或没有收到,关系并不大。
如果对方收到Reset报文,也会释放该TCP Session 的相关内存结构体。
如果对方没有收到Reset 报文,可能会继续发送让接收方弹射出Reset报文的报文,到最后对方一样会收到Reset 报文,并最终释放内存。
为何ACK报文不需要ACK确认?
这里的ACK报文,是指没有携带任何数据的裸ACK报文,对方收到这样的ACK报文,自然也不需要ACK。否则,对方为了ACK己方的ACK,那己方收到对方的ACK,也要ACK对方的ACK,这就是一个死循环,永无止息。
所以为了避免这个死循环,一律不允许ACK对方的裸ACK报文。
有同学会说,按照这么说,TCP连接应该是四次消息交互啊。
1.A 发送SYN 报文给B,这是第一次报文交互。
2. B发送ACK确认A的SYN报文,这是第二次报文交互
3. B发送自己的SYN报文给A,这是第三次报文交互
4. A需要ACK确认B的SYN报文,这是第四次报文交互
以上的演绎没有问题,但是报文2、3为何要分开发送呢?增加了延迟不说,同时还白白浪费了网络的带宽,完全可以将报文2、3合并起来,不就是在报文2的ACK状态位的位置置“1”就结了吗?
这就是三次消息交互的由来!
原文
TCP作为一种可靠传输控制协议,其核心思想:既要保证数据可靠传输,又要提高传输的效率,而用三次恰恰可以满足以上两方面的需求!
TCP可靠传输的精髓:TCP连接的一方A,由操作系统动态随机选取一个32位长的序列号(Initial Sequence Number),假设A的初始序列号为1000,以该序列号为原点,对自己将要发送的每个字节的数据进行编号,1001,1002,1003…,并把自己的初始序列号ISN告诉B,让B有一个思想准备,什么样编号的数据是合法的,什么编号是非法的,比如编号900就是非法的,同时B还可以对A每一个编号的字节数据进行确认。如果A收到B确认编号为2001,则意味着字节编号为1001-2000,共1000个字节已经安全到达。
同理B也是类似的操作,假设B的初始序列号ISN为2000,以该序列号为原点,对自己将要发送的每个字节的数据进行编号,2001,2002,2003…,并把自己的初始序列号ISN告诉A,以便A可以确认B发送的每一个字节。如果B收到A确认编号为4001,则意味着字节编号为2001-4000,共2000个字节已经安全到达。
一句话概括,TCP连接握手,握的是啥?
通信双方数据原点的序列号!
以此核心思想我们来分析二、三、四次握手的过程。
A <-------> B
四次握手的过程:
1.1 A 发送同步信号SYN + A'sInitial sequence number
1.2 B 确认收到A的同步信号,并记录A's ISN 到本地,命名 B's ACK sequence number
1.3 B发送同步信号SYN + B's Initial sequence number
1.4 A确认收到B的同步信号,并记录B's ISN 到本地,命名 A's ACK sequence number
很显然1.2和1.3 这两个步骤可以合并,只需要三次握手,可以提高连接的速度与效率。
二次握手的过程:
2.1 A 发送同步信号SYN + A'sInitial sequence number
2.2 B发送同步信号SYN + B'sInitial sequence number + B's ACK sequence number
这里有一个问题,A与B就A的初始序列号达成了一致,这里是1000。但是B无法知道A是否已经接收到自己的同步信号,如果这个同步信号丢失了,A和B就B的初始序列号将无法达成一致。
于是TCP的设计者将SYN这个同步标志位SYN设计成占用一个字节的编号(FIN标志位也是),既然是一个字节的数据,按照TCP对有数据的TCP segment 必须确认的原则,所以在这里A必须给B一个确认,以确认A已经接收到B的同步信号。
有童鞋会说,如果A发给B的确认丢了,该如何?
A会超时重传这个ACK吗?不会!TCP不会为没有数据的ACK超时重传。
那该如何是好?B如果没有收到A的ACK,会超时重传自己的SYN同步信号,一直到收到A的ACK为止。
补充阅读
第一个包,即A发给B的SYN 中途被丢,没有到达B
A会周期性超时重传,直到收到B的确认
第二个包,即B发给A的SYN +ACK 中途被丢,没有到达A
B会周期性超时重传,直到收到A的确认
第三个包,即A发给B的ACK 中途被丢,没有到达B
A发完ACK,单方面认为TCP为 Established状态,而B显然认为TCP为Active状态:
a. 假定此时双方都没有数据发送,B会周期性超时重传,直到收到A的确认,收到之后B的TCP 连接也为 Established状态,双向可以发包。
b. 假定此时A有数据发送,B收到A的 Data + ACK,自然会切换为established 状态,并接受A的Data。
c. 假定B有数据发送,数据发送不了,会一直周期性超时重传SYN + ACK,直到收到A的确认才可以发送数据。
TCP 为什么是三次握手,而不是两次或四次?的更多相关文章
- TCP 为什么需要三次握手而不是两次
我的理解: A 发送给B SYN, 然后B回复A ACK, 假设这两次握手已经完成, 但是B不知道A是否收到ACK就开始 recv , 这样就是空等 算是死循环吧??
- 计算机网络:TCP协议建立连接的过程为什么是三次握手而不是两次?【对于网上的两种说法我的思考】
网上关于这个问题吵得很凶,但是仔细看过之后我更偏向认为两种说的是一样的. 首先我们来看看 TCP 协议的三次握手过程 如上图所示: 解释一下里面的英文: 里面起到作用的一些标志位就是TCP报文首部里的 ...
- 利用tcpdump抓包工具监控TCP连接的三次握手和断开连接的四次挥手
TCP传输控制协议是面向连接的可靠的传输层协议,在进行数据传输之前,需要在传输数据的两端(客户端和服务器端)创建一个连接,这个连接由一对插口地址唯一标识,即是在IP报文首部的源IP地址.目的IP地址, ...
- TCP为什么要三次握手与四次分手?
TCP协议简介 TCP协议是五层协议中运输层的协议,下面依赖网络层.链路层.物理层,对于一个报文想发到另一台机器(假设是服务器)上对等层,每一个所依赖的层都会对报文进行包装,例如TCP协议就依赖网络层 ...
- TCP 为什么是三次握手,而不是两次或四次?
TCP是一种全双工的可靠传输协议,核心思想:保证数据可靠传输以及数据的传输效率 A------B 二次握手: 1.A发送同步信号SYN+A's initial sequence number 2.B发 ...
- TCP协议的三次握手和四次分手
HTTP连接 HTTP协议即超文本传送协议(Hypertext Transfer Protocol ),是Web联网的基础,也是手机联网常用的协议之一,HTTP协议是建立在TCP协议之上的一种应用. ...
- 通俗大白话来理解TCP协议的三次握手和四次断开
from : https://blog.csdn.net/Neo233/article/details/72866230?locationNum=15&fps=1%20HTTP%E6%8F%A ...
- 通俗大白话来理解TCP协议的三次握手和四次分手
通俗理解: 但是为什么一定要进行三次握手来保证连接是双工的呢,一次不行么?两次不行么?我们举一个现实生活中两个人进行语言沟通的例子来模拟三次握手. 引用网上的一些通俗易懂的例子,虽然不太正确,后面会指 ...
- TCP协议的三次握手和四次挥手机制
核心知识点: 1.三次握手:seq和ack number 2.四次挥手:FIN和随机数 一.TCP/IP协议 TCP/IP协议(Transmission control protool/Interne ...
- 大白话解说TCP/IP协议三次握手和四次挥手
背景 和女朋友异地恋一年多,为了保持感情我提议每天晚上视频聊天一次. 从好上开始,到现在,一年多也算坚持下来了. 问题 有时候聊天的过程中,我的网络或者她的网络可能会不好,视频就会卡住,听不到对方的声 ...
随机推荐
- [Codeforces 1208D]Restore Permutation (树状数组)
[Codeforces 1208D]Restore Permutation (树状数组) 题面 有一个长度为n的排列a.对于每个元素i,\(s_i\)表示\(\sum_{j=1,a_j<a_i} ...
- BZOJ 3252题解(贪心+dfs序+线段树)
题面 传送门 分析 此题做法很多,树形DP,DFS序+线段树,树链剖分都可以做 这里给出DFS序+线段树的代码 我们用线段树维护到根节点路径上节点权值之和的最大值,以及取到最大值的节点编号x 每次从根 ...
- SCUT - 77 - 哈利波特与他的魔法杖
https://scut.online/p/77 METO说是单点更新线段树.要记录哪些点不用再更新,不太清楚具体是要怎么实现? 一个类似的想法是把n个点建一棵平衡树,每次节点变成0之后从树上移除,至 ...
- python random模块导入及用法
random是程序随机数,很多地方用到,验证码,图片上传的图片名称等,下面说说python random模块导入及用法 1,模块导入 import random 2,random用法 random.r ...
- 短篇文档兼职看过来 python 课后作业 assignment project
文档兼职 开题报告 读后感 课后作业 等 代写 编程,Java ,Python,R,等语言的,国内外课程作业指导,写作. 有经验,有作品,成交快,放心! 可联系 QQ 550987425
- echart 折线渐变 加柱形图结合图形,左右纵轴自设置格式,现行图北京渐变 ,x轴字体倾斜
app.title = '折柱混合'; option = { grid: { left: '5%', //距离左边的距离 right: '5%', //距离右边的距离 top:'8%', bottom ...
- linux详解 rsync 服务和配置文件
首先要选择服务器启动方式: l 对于负荷较重的 rsync 服务器应该选择独立运行方式 l 对于负荷较轻的 rsync 服务器应该选择 xinetd 运行方式 l 创建配 ...
- Linux性能优化从入门到实战:10 内存篇:如何利用Buffer和Cache优化程序的运行效率?
缓存命中率 缓存命中率,是指直接通过缓存获取数据的请求次数,占所有数据请求次数的百分比,可以衡量缓存使用的好坏.命中率越高,表示使用缓存带来的收益越高,应用程序的性能也就越好. 实际上,缓存是 ...
- rabbitmq tags
#用户角色####################### RabbitMQ的用户角色分类:none.management.policymaker.monitoring.administrator Ra ...
- HTML5 中list 和datalist实例
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...