怎么SDOI2011和SDOI2019的两道题这么像啊。。(虽然并不完全一样)

题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=2281

(luogu) https://www.luogu.org/problemnew/show/P2490

题解: 博弈论好难啊完全学不来QAQ

题目里应该有个限制,是先手不能左移,后手不能右移。

简单转化一发,就相当于有\(n\)堆石子,每次从\(1\)到\(d\)堆中取走任意多个,最后取完的人输。

其实这就是个Nim博弈套Bash博弈。

然后……然后我就不会了。

按理说……\(d=1\)的时候异或和为\(0\), 也就是每个二进制位\(1\)的个数为偶数,那么这个不是连猜都能猜出来每个二进制位\(1\)的个数为\((d+1)\)的倍数吗……Nim博弈套Bash博弈啊……

然后感性理解一下(可能也能算个证明吧): 考虑\(d=1\) Nim游戏的正确性,显然异或和为\(0\)时先手能且仅能将其变为不为\(0\),而后手在这之后能将其变为为\(0\). 假设先手动的最高位为\(i\), 则后手动第\(i\)位上为\(1\)的另一个石子,下面的变成与之对应的即可。归纳可证。那么考虑\(d>1\), 当所有数出现次数均为\((d+1)\)的倍数时,先手不可能依然变为出现次数均为\((d+1)\)的倍数;从高到低考虑位\(j\), 设现在已经改变的堆数为\(t\),\(t\)个数中有\(a\)个在位\(j\)上为\(1\), \(b\)个为\(0\), 并假设后手改动前这一位上\(1\)的个数模\((d+1)\)总共是\(x\). 若\(a\ge x\), 则改变这\(a\)个中的\(x\)个即可;若\(b\ge d+1-x\)则可以把\(b\)个中的\((d+1-x)\)个从\(0\)变成\(1\); 否则另外选择\(t\)堆之外的\((x-a)\)堆变成\(1\), 则选的总数为\((x-a)+a+b=x+b\le d+1-b+b=d+1\), 故移动依然合法。(怎么写着写着就变成抄别的题解了……)

然后问题转化为求\(m\)个数和为\(n\)二进制每一位\(1\)的个数都为\((d+1)\)的倍数的方案数。(计数我也不会啊呜呜呜……)

设\(dp[i][j]\)表示考虑二进制低\(i\)位,和为\(j\)的方案数,随便枚举一下转移即可

时间复杂度很低。

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std; inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
} const int P = 1e9+7;
const int N = 2e4;
const int LGN = 14;
llong fact[N+3],finv[N+3];
llong dp[LGN+3][N+3];
int n,m,d; llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong comb(llong x,llong y) {return x<0||y<0||x<y ? 0ll : fact[x]*finv[y]%P*finv[x-y]%P;} int main()
{
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
scanf("%d%d%d",&n,&m,&d); n-=m; m>>=1;
for(int i=0; i*(d+1)<=m && i*(d+1)<=n; i++)
{
dp[0][i*(d+1)] = comb(m,(d+1)*i);
}
for(int i=1; i<=LGN; i++)
{
for(int j=0; j<=n; j++)
{
llong cur = dp[i-1][j];
if(cur)
{
for(int k=0; j+(d+1)*k*(1<<i)<=n && (d+1)*k<=m; k++)
{
llong tmp = cur*comb(m,(d+1)*k);
dp[i][j+(d+1)*k*(1<<i)] = (dp[i][j+(d+1)*k*(1<<i)]+tmp)%P;
}
}
}
}
llong ans = 0ll;
for(int i=0; i<=n; i++)
{
llong tmp = comb(n+m-i,m)*dp[LGN][i];
ans = (ans+tmp)%P;
}
ans = (comb(n+m+m,m+m)-ans+P)%P;
printf("%lld\n",ans);
return 0;
}

BZOJ 2281 Luogu P2490 [SDOI2011]黑白棋 (博弈论、DP计数)的更多相关文章

  1. P2490 [SDOI2011]黑白棋

    P2490 [SDOI2011]黑白棋 题意 一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右.他们每次操作可以移动 1 到 \(d\) 个 ...

  2. BZOJ2281:[SDOI2011]黑白棋(博弈论,组合数学,DP)

    Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...

  3. luoguP2490 [SDOI2011]黑白棋 博弈论 + 动态规划

    博弈部分是自己想出来的,\(dp\)的部分最后出了点差错QAQ 从简单的情况入手 比如\(k = 2\) 如果有这样的局面:$\circ \bullet $,那么先手必输,因为不论先手怎样移动,对手都 ...

  4. BZOJ2281 [SDOI2011]黑白棋 【dp + 组合数】

    题目 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色棋子 ...

  5. Bzoj 2281 [Sdoi2011]黑白棋 题解

    2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec  Memory Limit: 512 MBSubmit: 592  Solved: 362[Submit][Status][ ...

  6. 【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)

    [BZOJ2281][SDOI2011]黑白棋(博弈论,动态规划) 题面 BZOJ 洛谷 题解 先看懂这题目在干什么. 首先BZOJ上面的题面没有图,换到洛谷看题就有图了. 不难发现都相邻的两个异色棋 ...

  7. [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)

    2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec  Memory Limit: 512 MBSubmit: 626  Solved: 390[Submit][Status][ ...

  8. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  9. BZOJ 2281: [Sdoi2011]黑白棋 (Nim游戏+dp计数)

    题意 这题目有一点问题,应该是在n个格子里有k个棋子,k是偶数.从左到右一白一黑间隔出现.有两个人不妨叫做小白和小黑.两个人轮流操作,每个人可以选 1~d 枚自己颜色的棋子,如果是白色则只能向右移动, ...

随机推荐

  1. C++:string操作函数

    要想使用标准C++中string类,必须要包含 #include <string>// 注意是<string>,不是<string.h>,带.h的是C语言中的头文件 ...

  2. Django查询数据库返回字典dict数据

    个人观点: 个人认为,在Django项目中, 开发团队为了让使用该框架的用户都使用自带的序列化功能,从而让框架中的SQL返回值很不直观,对于直接使用SQL语句的用户很犯难. 解决: from djan ...

  3. APT高持续渗透攻击-后门篇

    APT是指高级持续性威胁, 利用先进的攻击手段对特定目标进行长期持续性网络攻击的攻击形式,APT攻击的原理相对于其他攻击形式更为高级和先进,其高级性主要体现在APT在发动攻击之前需要对攻击对象的业务流 ...

  4. jackson json序列化 首字母大写 第二个字母需小写

    有这样一个类: @Setter @Getter @JsonNaming(value = PropertyNamingStrategy.UpperCamelCaseStrategy.class) pub ...

  5. 9.jQuery之简洁版滑动下拉菜单

    知识点:hover的使用,已经slideToggle的切换效果 <style> * { margin: 0; padding: 0; } li { list-style-type: non ...

  6. 如何导入GitHub下的vue项目 并启动

    如何运行  下载的GitHub项目 一 准备工作: Node.js环境(npm包管理器) vue-cli 脚手架构建工具 cnpm npm的淘宝镜像 二 安装node.js 略 cmd 输入node ...

  7. Hadoop基础概念

    Apache Hadoop有2个核心的组件,他们分别是: HDFS: HDFS是一个分布式文件系统集群,它可以将大的文件分裂成块并将他们冗余地分布在多个节点上,HDFS是运行在用户空间的文件系统 Ma ...

  8. 爬虫获取网页数据,报错:UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position 1: invalid start by

    https://blog.csdn.net/hj_xy_0705/article/details/85011072

  9. Java并发编程实战 第2章 线程安全性

    编写线程安全的 代码,核心在与对共享的和可变的对象的状态的访问. 如果多个线程访问一个可变的对象时没有使用同步,那么就会出现错误.在这种情况下,有3中方式可以修复这个问题: 不在线程之间共享该状态变量 ...

  10. Mysql定时器定时删除表数据

    由于测试环境有张日志表没定时2分钟程序就狂插数据,导致不到1一个月时间,这张日志表就占用了6.7G的空间,但是日志刷新较快,有些日志就没什么作用,就写了个定时器,定期删除这张表的数据 首先先查看mys ...