题目描述:

链接:https://www.nowcoder.com/acm/contest/141/C
来源:牛客网

Eddy likes to play cards game since there are always lots of randomness in the game. For most of the cards game, the very first step in the game is shuffling the cards. And, mostly the randomness in the game is from this step. However, Eddy doubts that if the shuffling is not done well, the order of the cards is predictable!

To prove that, Eddy wants to shuffle cards and tries to predict the final order of the cards. Actually, Eddy knows only one way to shuffle cards that is taking some middle consecutive cards and put them on the top of rest. When shuffling cards, Eddy just keeps repeating this procedure. After several rounds, Eddy has lost the track of the order of cards and believes that the assumption he made is wrong. As Eddy's friend, you are watching him doing such foolish thing and easily memorizes all the moves he done. Now, you are going to tell Eddy the final order of cards as a magic to surprise him.

Eddy has showed you at first that the cards are number from 1 to N from top to bottom.

For example, there are 5 cards and Eddy has done 1 shuffling. He takes out 2-nd card from top to 4-th card from top(indexed from 1) and put them on the top of rest cards. Then, the final order of cards from top will be [2,3,4,1,5].

输入描述:


The first line contains two space-separated integer N, M indicating the number of cards and the number of shuffling Eddy has done.
Each of following M lines contains two space-separated integer pi, si indicating that Eddy takes pi-th card from top to (pi+si-1)-th card from top(indexed from 1) and put them on the top of rest cards.

1 ≤ N, M ≤ 105
1 ≤ pi ≤ N
1 ≤ si ≤ N-pi+1

输出描述:


Output one line contains N space-separated integers indicating the final order of the cards from top to bottom.

示例:

输入5 1

2 3

输出

2 3 4 1 5

题意:

给你N张牌,初始顺序为1....n;有M次洗牌操作;(qi,si) 表示从【1,n】中 拿第qi张牌+si张牌 放到最上面(类似洗牌)问你到最后牌面的顺序是?

题解:

rope大法好

代码:

#include<bits/stdc++.h>
#include<ext/rope>
using namespace std;
using namespace __gnu_cxx;
rope<int>r;
typedef long long ll;
typedef unsigned long long ull;
#define mod 1000000007
#define pb push_back
int main()
{
ios_base::sync_with_stdio();
//cin.tie(0);
int n,m;
while(cin>>n>>m)
{
for(int i=;i<=n;i++)
r.pb(i);
for(int i=;i<m;i++)
{
int x,y;
cin>>x>>y;
r=r.substr(x-,y)+r.substr(,x-)+r.substr(x+y-,n-x-y+);
}
for(int i=;i<n;++i) cout<<r[i]<<" ";
} return ;
}

好像这里用了rope之后如果再用cin.tie(0);会输不出来,不知道为什么

另外关于rope有博客参考:

https://blog.csdn.net/tianwei0822/article/details/81240063

https://blog.csdn.net/tianwei0822/article/details/81240063

下面是splay的做法:

#include <bits/stdc++.h>
using namespace std;
const int N=;
namespace Splay{
int a[N];
int val[N],mn[N],tag[N],size[N],son[N][],f[N],tot,root;bool rev[N];
int build(int,int,int);
void Initialize(int n){tot=;root=build(,n+,);}
void rev1(int x){if(!x)return;swap(son[x][],son[x][]);rev[x]^=;}
void add1(int x,int p){if(!x)return;val[x]+=p;mn[x]+=p;tag[x]+=p;}
void pb(int x){
if(rev[x]){
rev1(son[x][]);
rev1(son[x][]);
rev[x]=;
}
if(tag[x]){
add1(son[x][],tag[x]);
add1(son[x][],tag[x]);
tag[x]=;
}
}
void up(int x){
size[x]=,mn[x]=val[x];
if(son[x][]){
size[x]+=size[son[x][]];
if(mn[x]>mn[son[x][]])mn[x]=mn[son[x][]];
}
if(son[x][]){
size[x]+=size[son[x][]];
if(mn[x]>mn[son[x][]])mn[x]=mn[son[x][]];
}
}
void rotate(int x){
int y=f[x],w=son[y][]==x;
son[y][w]=son[x][w^];
if(son[x][w^])f[son[x][w^]]=y;
if(f[y]){
int z=f[y];
if(son[z][]==y)son[z][]=x;
if(son[z][]==y)son[z][]=x;
}f[x]=f[y];son[x][w^]=y;f[y]=x;up(y);
}
void splay(int x,int w){
int s=,i=x,y;a[]=x;
while(f[i])a[++s]=i=f[i];
while(s)pb(a[s--]);
while(f[x]!=w){
y=f[x];
if(f[y]!=w){if((son[f[y]][]==y)^(son[y][]==x))rotate(x);else rotate(y);}
rotate(x);
}if(!w)root=x;
up(x);
}
int build(int l,int r,int fa){
int x=++tot,mid=(l+r)>>;
f[x]=fa;val[x]=a[mid];
if(l<mid)son[x][]=build(l,mid-,x);
if(r>mid)son[x][]=build(mid+,r,x);
up(x);
return x;
}
int kth(int k){
int x=root,tmp;
while(){
pb(x);
tmp=size[son[x][]]+;
if(k==tmp)return x;
if(k<tmp)x=son[x][];else k-=tmp,x=son[x][];
}
}
void REVOLVE(int x,int y,int z){
z%=y-x+;
if(z){
int u=x,t;
x=kth(y-z+),y=kth(y+);
splay(x,),splay(y,x),t=son[y][];
son[y][]=,up(y),up(x);
x=kth(u),y=kth(u+);
splay(x,),splay(y,x),son[y][]=t,f[t]=y;
up(y),up(x);
}
}
int A(int x){
int y=kth(x+);
return val[y];
}
}
using namespace Splay;
int n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)a[i]=i;
root=build(,n+,);
while(m--){
int x,y;
scanf("%d%d",&x,&y);
REVOLVE(,x+y-,y);
}
for(int i=;i<n;i++)printf("%d ",A(i));
printf("%d\n",A(n));
return ;
}

splay

rope(平衡二叉树)的更多相关文章

  1. 算法与数据结构(十一) 平衡二叉树(AVL树)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

  2. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  3. 谈c++ pb_ds库(一)rope大法好

    参考资料 1)官方说明 支持 sorry,cena不支持rope 声明 1)头文件 #include<ext/rope> 2)调用命名空间 using namespace __gnu_cx ...

  4. [bzoj1269][AHOI2006文本编辑器editor] (splay模版题 or pb_ds [rope]大法)

    Description 这些日子,可可不和卡卡一起玩了,原来可可正废寝忘食的想做一个简单而高效的文本编辑器.你能帮助他吗?为了明确任务目标,可可对“文本编辑器”做了一个抽象的定义:   文本:由0个或 ...

  5. [LeetCode] Balanced Binary Tree 平衡二叉树

    Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...

  6. Java数据结构——平衡二叉树的平衡因子(转自牛客网)

    若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性.首先要找出插入新结点后失去平衡的最小子树根结点的指针.然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树.当失去平衡的最小子树被 ...

  7. 【数据结构】平衡二叉树—AVL树

    (百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增 ...

  8. 平衡二叉树AVL删除

    平衡二叉树的插入过程:http://www.cnblogs.com/hujunzheng/p/4665451.html 对于二叉平衡树的删除采用的是二叉排序树删除的思路: 假设被删结点是*p,其双亲是 ...

  9. 平衡二叉树AVL插入

    平衡二叉树(Balancedbinary tree)是由阿德尔森-维尔斯和兰迪斯(Adelson-Velskiiand Landis)于1962年首先提出的,所以又称为AVL树. 定义:平衡二叉树或为 ...

随机推荐

  1. 常用颜色的RGB分布

    RGB色彩模式是工业界的一种颜色标准,它通过对红(RED).绿(GREEN).蓝(BLUE)三种基本颜色的相互组合从而叠加出各种颜色.RGB色彩模式为每一个红.绿.蓝分类了0-255范围内的亮度值. ...

  2. Web前端基础学习-1

    HTML5/CSS简介 首先来说一说什么是HTML5,HTML5可以认为是字面上的意义,也就是HTML的第五代产品,当然从另一个角度来说它是一种新的富客户端解决方案. HTML5 将成为 HTML.X ...

  3. activiti 5.22 表结构解析及清空流程运行测试数据

    1.结构设计 1.1.    逻辑结构设计 Activiti使用到的表都是ACT_开头的. ACT_RE_*: 'RE'表示repository(存储),RepositoryService接口所操作的 ...

  4. vue项目build打包后图片路径不对导致图片空白不显示问题解决方法

    1.在上篇文章src配置及引入的基础上修改项目配置: 文章链接地址:https://www.cnblogs.com/hsl-shiliang/p/10333022.html. 2.具体配置过程如图: ...

  5. turtle库使用

    turtle库的使用 绘图窗体布局 turtle.setup(width,height,startx,straty) 用来控制窗体的大小与位置,其中后width与height用来控制窗体的大小,sta ...

  6. Git --05 Gitlab使用

    目录 Gitlab使用 01. 外观配置 02. Gitlab汉化配置 03. 注册限制 04. 创建用户及组 05. 创建用户 06. 把用户添加到组 07. 创建项目 08. 推送代码到Gitla ...

  7. Algorithms4th 1.1.25 欧几里得算法——数学归纳法证明

    欧几里得算法的自然语言描述 计算两个非负整数p和q的最大公约数: 若q是0,则最大公约数为p.否则将p除以q得到余数r,p和q的最大公约数即为q和r的最大公约数. 数学归纳法证明 基础步骤: 若q = ...

  8. Linux学习之旅(二)Linux文档操作

    目录操作 1. 创建目录 // 目录可以是绝对路径,也可以是相对路径 mkdir 目录名 //创建一个目录 mkdir -p 目录名1/目录名1/... //一次性创建多级目录 2. 删除目录 // ...

  9. python正则表达式 re (二)sub

    背景: re.sub是re模块重要的组成部分,并且功能也非常强大,主要功能实现正则的替换. re.sub定义: sub(pattern, repl, string, count=0, flags=0) ...

  10. PCB设计规则中英文对照

    Electrical(电气规则) Clearance:安全间距规则 Short Circuit:短路规则 UnRouted Net:未布线网络规则 UnConnected Pin:未连线引脚规则 Ro ...