前言

近期, 全球权威IT咨询机构Forrester发布"The Forrester Wave: CloudData Warehouse Q4 2018"研究报告,阿里巴巴分析型数据库(AnalyticDB)成功入选。

AnalyticDB作为阿里巴巴自主研发的PB级实时云数据仓库,全面兼容MySQL协议以及SQL:2003 语法标准,可以毫秒级针对万亿级数据进行即时的多维分析透视和业务探索,帮客户将整个数据分析和价值化从传统的离线分析带到下一代的在线实时分析模式。本文将深入解读AnalyticDB成功入选背后的核心产品以及带来的客户价值。

核心能力一:快和实时

分析型数据库AnalyticDB在瞬间即可对万亿级别的数据进行实时的多维度分析透视,快速发现数据价值。AnalyticDB对复杂SQL查询速度相比传统的关系型数据库快10倍,此外,AnalyticDB还可以快速扩容至数千节点的超大规模,进一步提升查询响应速度。三大模块合力构筑了远远领先竞争对手的性能优势:

  • 智能SQL优化器:针对复杂的SQL查询,AnalyticDB的SQL Optimizer 实现了多种查询改写优化,同时依据统计信息选择JOIN ORDERING最优路径,并支持 CTE 归并等功能。同时针对高并发低延迟查询,提供智能的 Plan cache,将相似SQL Pattern 计划都缓存起来,规避重复优化开销。
  • 曦和计算引擎: AnalyticDB 在2017年全面升级为新一代曦和分布式计算引擎,整体采用MPP架构,并支持DAG计算模型,节点内引入LLVM等运行时编译优化JIT技术,性能提升一倍以上。数据分析任务在曦和计算引擎内被打散成小颗粒的计算单元,引擎内置分时轮询的计算调度机制,可以保证高并发下作业任务的稳定运行。
  • 玄武存储引擎:AnalyticDB支持行列混合存储,同时针对不同的数据类型,当数据实时写入时,智能的构建多种维度索引,包括B+索引、区间索引、倒排索引、位图索引等,并对传统索引算法进行创新,引入动态过滤、延迟物化等方式,极大的降低I/O,实现高性能的点或范围的检索,支持千亿级记录关联分析。

核心能力二:超大规模

AnalyticDB是全分布式结构,使得数据库支持ECU节点动态线性扩容至数千节点。用户可以通过横向扩容来大幅度提升查询SQL响应速度、以及换来SQL处理高并发。

AnalyticDB 基于阿里云飞天系统构筑,AnalyticDB采用分层解耦架构,同时将分析计算、数据写入、索引构建等分离为不同节点,同时各种类型节点采用多活运行模式实现高可用,数据存储在盘古分布式文件系统上,实现高可靠和高性能读写I/O,在整体架构上实现了弹性扩展和高可用。AnalyticDB架构上每一层结构,都充分的考虑了规模化扩展性问题。

核心能力三:高并发实时写入和更新

由于无论是前端接入层、写入节点支持动态大规模扩展,客户可以从最小规模的10万TPS写入能力,通过横向扩容节点提升至1000万+TPS的写入能力,实时写入后,数据秒级别可见,从写入到分析整个数据延迟控制在秒级。

单个表最大支持PB级数据,十万亿记录,传统的数据仓库通常是离线Load数据模式,不具备实时高并发写入能力。正是由于具备海量数据实时写入能力,AnalyticDB数据分析时效性非常高,是企业数据离线计算转实时化的下一代核心解决方案。

核心能力四:灵活

AnalytiDB无论是前端接入层还是弹性计算层、以及数据存储层均是全分布式设计,全局无单点。外加存储计算分离结构,带来的优势是极度灵活。云上客户不仅可以随时进行灵活调整节点数量,还可以做实例规格的动态升降配。AnalytiDB同时支持在存储型的SATA实例和高性能的SSD实例间灵活切换。

举例来说: 可以从8个高性能的c4实例升到12个高性能的c8实例,或从12个c8降到8个c4,甚至从2个高性能c8节点切换至4个大存储SATA的s2n等,企业可以真正做到灵活控制成本。

核心能力五:易用

AnalyticDB作为云端托管的PB级SQL数据仓库,高度兼容MySQL协议和SQL:2003,通过标准SQL和常用的BI工具、以及ETL工具平台即可轻松使用。同时结合阿里云数据传输服务(DTS) + 数据可视化配套(DataV & QuickBI), 轻松拖拽式即可完成企业的实时数据仓库建设。AnalyticDB旨在帮助企业降低实时数据化运营的建设门槛。

微案例:为企业解决数据化建设效率和性能难题

递四方集团(4PX)是领先的跨境电商物流服务提供商。递四方信息科技团队在建设了多年的离线数据平台后,需要短时间内建设PB级别实时数据平台支持数字化运营。递四方信息科技在调研了一系列的解决方案后,综合成本和建设效率等因素,最后选择了基于AnalyticDB来构建实时数据平台。 双方通力合作,在极短时间内通过DTS+AnalyticDB+DataV/QuickBI套件,以简单快速的拖拽配置方式完成了4PX企业实时数仓的初期基础建设。

无他相机作为一款流行的拍照智能App, 有各种用户和App数据需要上报做实时分析,以帮助运营人员做活动效果分析以及开发人员做App分析,不断优化用户体验和App质量。数据总量约100亿,需实时入库更新,客户最早期的方案是MySQL,后续换成了MongoDB,解决了实时写入问题,但是分析性能巨慢。在使用了分析型数据库的存储型实例后,将业务数据直接写入AnalyticDB,不但解决了实时高并发写入问题,复杂分析性能从40分钟+降低到秒级别,高分期QPS 1800+。

典型行业客户-他们也在使用AnalyticDB

展望未来:储备更多创新力量 + 构筑更丰富的生态

分析型数据库AnalyticDB,作为阿里巴巴下一代PB级实时数据仓库, 承载着整个集团内和云上客户的数据价值实时化分析的使命。此次报告可以看出,整个大数据企业服务迈入CDW阶段,灵活、易用、自助化服务成为主流趋势,AnalyticDB接下来将在易用性、数据通道、任务管理、可视化等周边生态建设上继续做广、做深。同时也为未来储备了一些核心力量,并取得阶段性的进展:

  1. 分析型数据库AnalyticDB首次在“双11 全球狂欢节” 采用GPU加速加速技术,在计算成本大幅降低的情况下,服务全球商家将数据分析从离线进入在线时代,支撑PB级数据从T+1计算提速到秒级实时分析。
  2. 向量分析首次支撑银泰、盒马等新零售场景的人脸识别、算法推荐、结构化数据实时融合分析,毫秒级打通线上线下会员体系,支撑实时数据化线下互动、营销。

AnalyticDB为数据价值在线化而生,作为实时云数据仓库平台,希望能将最领先的下一代实时数仓能力普惠给所有企业,帮助企业转型加速数据价值探索和在线化。

阅读原文​​​​​​​

阿里下一代云分析型数据库AnalyticDB入选Forrester云化数仓象限的更多相关文章

  1. 阿里巴巴下一代云分析型数据库AnalyticDB入选Forrester Wave™ 云数仓评估报告 解读

    前言近期, 全球权威IT咨询机构Forrester发布"The Forrester WaveTM: CloudData Warehouse Q4 2018"研究报告,阿里巴巴分析型 ...

  2. 回首2018 | 分析型数据库AnalyticDB: 不忘初心 砥砺前行

    题记 分析型数据库AnalyticDB(下文简称ADB),是阿里巴巴自主研发.唯一经过超大规模以及核心业务验证的PB级实时数据仓库.截止目前,现有外部支撑客户既包括传统的大中型企业和政府机构,也包括众 ...

  3. 悠星网络基于阿里云分析型数据库PostgreSQL版的数据实践

    说到“大数据”,当下这个词很火,各行各业涉及到数据的,目前都在提大数据,提数据仓库,数据挖掘或者机器学习,但同时另外一个热门的名词也很火,那就是“云”.越来越多的企业都在搭建属于自己的云平台,也有一些 ...

  4. AnalyticDB - 分析型数据库

    https://yq.aliyun.com/teams/31?spm=5176.7937365.1120968.ee1.78505692UL9DhG 分析型数据库(AnalyticDB)是一种高并发低 ...

  5. 什么是分析型数据库PostgreSQL版

    分析型数据库PostgreSQL版(原HybridDB for PostgreSQL)为您提供简单.快速.经济高效的 PB 级云端数据仓库解决方案.分析型数据库PostgreSQL版 兼容 Green ...

  6. 更强大的实时数仓构建能力!分析型数据库PostgreSQL 6.0新特性解读

    阿里云 AnalyticDB for PostgreSQL 为采用MPP架构的分布式集群数据库,完备支持SQL 2003,部分兼容Oracle语法,支持PL/SQL存储过程,触发器,支持标准数据库事务 ...

  7. amazon redshift 分析型数据库特点——本质还是列存储

    Amazon Redshift 是一种快速且完全托管的 PB 级数据仓库,使您可以使用现有的商业智能工具经济高效地轻松分析您的所有数据.从最低 0.25 USD 每小时 (不承担任何义务) 直到每年每 ...

  8. Gartner:阿里云位列全球云数据库市场份额前三,数据库未来需上云

    近日,国际权威研究机构Gartner发布 <The Future of the Database Management System (DBMS) Market Is Cloud>报告,鲜 ...

  9. (转)操作型数据库的春天:MongoDB 1.5亿美元融资背后的故事

    大部分融资都要耗时数月,但非关系式数据库MongoDB仅用3周时间就完成了1.5亿美元的融资.为什么这个进程会这么快,MongoDB CEO Max Schireson在接受采访时说,这是因为投资者看 ...

随机推荐

  1. idea中配置Resin运行环境

    文章目录 背景 下载resin 配置idea 背景 为了能够读Resin的源码,只看源码看不到值,故想在idea中通过断点查看. 下载resin https://caucho.com/products ...

  2. Naive Bayes Algorithm And Laplace Smoothing

    朴素贝叶斯算法(Naive Bayes)适用于在Training Set中,输入X和输出Y都是离散型的情况.如果输入X为连续,输出Y为离散,我们考虑使用逻辑回归(Logistic Regression ...

  3. Decision Tree Algorithm

    Decision Tree算法的思路是,将原始问题不断递归地细分为子问题,直到子问题直接可获得答案为止.在模型训练的过程中,根据训练集去做树的生长(Grow the tree),生长所有可能的Bran ...

  4. Mac010--IDEA安装及应用

    Mac--IDEA安装及应用 应用IDEA,首先确保已安装如下环境: JDK:JDK是整个java开发的核心,它包含了JAVA的运行环境,JAVA工具和JAVA基础的类库(安装 & 配置环境变 ...

  5. Arrays -数组工具类,数组转化字符串,数组排序等

    package cn.learn.basic; import java.util.Arrays; /* java.util.Arrays是一个与数组相关的工具类,含有大量静态方法,用来实现数组常见的操 ...

  6. df认识

    import pandas as pd #自己创建一个df df = pd.DataFrame({ ,,], 'col2':["zs",'li','zl'], 'col3':[3. ...

  7. CentOS7通过SpeedTest工具测速

    首先要安装SpeedTest工具,这里提供两种方法安装SpeedTest: 一.通过直接下载SpeedTest脚本,给权限运行脚本即可 [root@bogon ~]#wget -O speedtest ...

  8. FireFox浏览器导出文件名乱码

    解决方案1 String codedFileName = "导出文件名.xls"; String agent = request.getHeader("USER-AGEN ...

  9. Python入门习题1.温度转换

    这一节的课堂例题为: 例1.编写一个Python程序,完成摄氏度到华氏度,华氏度到摄氏度的温度转换. 解: (1)分析问题:利用程序实现温度转换,由用户输入温度值,程序给出输出结果. (2)划分边界: ...

  10. LOJ 2183 / SDOI2015 序列统计 (DP+矩阵快速幂)

    题面 传送门 分析 考虑容斥原理,用总的方案数-不含质数的方案数 设\(dp1[i][j]\)表示前i个数,和取模p为j的方案数, \(dp2[i][j]\)表示前i个数,和取模p为j的方案数,且所有 ...