Description

SD有一名神犇叫做Oxer,他觉得字符串的题目都太水了,于是便出了一道题来虐蒟蒻yts1999。
 
他给出了一个字符串T,字符串T中有且仅有4种字符 'A', 'B', 'C', 'D'。现在他要求蒟蒻yts1999构造一个新的字符串S,构造的方法是:进行多次操作,每一次操作选择T的一个子串,将其加入S的末尾。
 
对于一个可构造出的字符串S,可能有多种构造方案,Oxer定义构造字符串S所需的操作次数为所有构造方案中操作次数的最小值。
 
Oxer想知道对于给定的正整数N和字符串T,他所能构造出的所有长度为N的字符串S中,构造所需的操作次数最大的字符串的操作次数。
 
蒟蒻yts1999当然不会做了,于是向你求助。
 

Input

第一行包含一个整数N,表示要构造的字符串长度。
 
第二行包含一个字符串T,T的意义如题所述。
 

Output

输出文件包含一行,一个整数,为你所求出的最大的操作次数。
 
题解: 有一个性质:操作次数越多,所能构造出来的最短串一定越长.
可以二分这个操作次数 $mid$,如果操作 $mid$ 次下所构造出来的最短的串的长度也大于 $n$,那么说明 $[mid+1,r]$ 所能构造出来的最短串的长度也大于 $n$,那么我们就可以把规模缩短到 $[l,mid-1]$
考虑二分出一个答案后如何检验
令 $f_{i,j}$ 表示以 $i$ 字符开头的单词后面可以接以 $j$ 字符开头的单词且$i$ 开头单词加上 $j$ 后还不是 $T$ 的子串的最短长度 
这个可以在后缀自动机上求
相当于要求一个 以 $i$ 开头的子串,且子串的末尾还没有 $j$ 这条边
反向更新一下即可
求出 $f$ 数组后,考虑 $g_{i,j,k}$ 表示以 $i$ 开头,后面加 $j$,一共操作了 $k$ 次的最短长度,则 $g_{i,j,k}=g_{i,m,k-1}+g_{m,j,1}$ 我们发现这个东西可以用矩阵乘法来加速,来一遍矩阵快速幂即可
 
#include<bits/stdc++.h>
#define maxn 300000
#define inf 2000000000000000000
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
ll n;
char str[maxn];
namespace SAM {
int last,tot;
int trans[maxn][6], f[maxn], len[maxn], c[maxn], rk[maxn], F[maxn][7];
void init() { last=tot=1; }
void extend(int c) {
int np=++tot,p=last;
len[np]=len[p]+1, last=np;
while(p&&!trans[p][c]) trans[p][c]=np,p=f[p];
if(!p) f[np]=1;
else {
int q=trans[p][c];
if(len[q]==len[p]+1)
f[np]=q;
else {
int nq=++tot;
len[nq]=len[p]+1;
memcpy(trans[nq], trans[q], sizeof(trans[q]));
f[nq]=f[q], f[np]=f[q]=nq;
while(p&&trans[p][c]==q) trans[p][c]=nq,p=f[p];
}
}
}
void prepare() {
memset(F,0x3f,sizeof(F));
for(int i=1;i<=tot;++i) ++c[len[i]];
for(int i=1;i<=tot;++i) c[i]+=c[i-1];
for(int i=1;i<=tot;++i) rk[c[len[i]]--]=i;
for(int i=tot;i>=1;--i) {
int o=rk[i];
for(int j=0;j<4;++j) {
if(!trans[o][j]) F[o][j]=1;
for(int k=0;k<4;++k)
F[o][j]=min(F[o][j], F[trans[o][k]][j]+1);
}
}
}
};
struct matrix {
ll mat[4][4];
void init(ll key) {
for(int i=0;i<4;++i)
for(int j=0;j<4;++j)
mat[i][j]=key;
}
};
matrix operator*(matrix a,matrix b) {
matrix c;
c.init(inf);
for(int i=0;i<4;++i)
for(int j=0;j<4;++j)
for(int k=0;k<4;++k)
c.mat[i][j]=min(c.mat[i][j], a.mat[i][k] + b.mat[k][j]);
return c;
}
matrix operator^(matrix base,ll k) {
matrix tmp;
tmp.init(0);
while(k){
if(k&1) tmp=tmp*base;
base=base*base,k>>=1;
}
return tmp;
}
bool check(ll mid) {
matrix s;
for(int i=0;i<4;++i)
for(int j=0;j<4;++j)
s.mat[i][j]=SAM::F[SAM::trans[1][i]][j];
s=s^mid;
ll re=inf;
for(int i=0;i<4;++i)
for(int j=0;j<4;++j)
re=min(re, s.mat[i][j]);
return re >= n;
}
int main() {
// setIO("input");
int i,_len;
scanf("%lld%s",&n,str+1);
_len=strlen(str+1);
SAM::init();
for(i=1;i<=_len;++i) {
SAM::extend(str[i]-'A');
}
SAM::prepare();
ll l=1, r=n, mid, ans;
while(l<=r){
mid=(l+r)>>1;
if(check(mid)) ans=mid, r=mid-1;
else l=mid+1;
}
printf("%lld\n",ans);
return 0;
}

  

BZOJ 4180: 字符串计数 后缀自动机 + 矩阵乘法 + 二分(神题)的更多相关文章

  1. 【BZOJ-4180】字符串计数 后缀自动机 + 矩阵乘法

    4180: 字符串计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 146  Solved: 66[Submit][Status][Discuss] ...

  2. BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)

    题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...

  3. BZOJ 1009 GT考试 (AC自动机 + 矩阵乘法加速dp)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1009 题意: 准考证号为\(n\)位数\(X_1X_2....X_n(0<=X_ ...

  4. BZOJ 3473: 字符串 [广义后缀自动机]

    3473: 字符串 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 354  Solved: 160[Submit][Status][Discuss] ...

  5. bzoj 2553: [BeiJing2011]禁忌 AC自动机+矩阵乘法

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2553 题解: 利用AC自动机的dp求出所有的转移 然后将所有的转移储存到矩阵中,进行矩阵 ...

  6. bzoj 3277: 串 & bzoj 3473: 字符串【后缀自动机||后缀数组】

    建一个广义后缀自动机(每加完一个串都返回root),在parent树上dpsum记录合法长度,打着时间戳往上跳,最后每个串在自动机上跑一变统计答案即可. 后缀数组理解起来可能方便一点,但是难写,就只说 ...

  7. 【BZOJ】1009: [HNOI2008]GT考试(dp+矩阵乘法+kmp+神题)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1009 好神的题orzzzzzzzzzz 首先我是连递推方程都想不出的人...一直想用组合来搞..看来 ...

  8. bzoj 4180: 字符串计数

    Description SD有一名神犇叫做Oxer,他觉得字符串的题目都太水了,于是便出了一道题来虐蒟蒻yts1999. 他给出了一个字符串T,字符串T中有且仅有4种字符 'A', 'B', 'C', ...

  9. 「bzoj 4180: 字符串计数」

    题目 真是一道好题 首先根据一个非常显然的贪心,如果给出了一个串\(S\),我们如何算最小操作次数呢 非常简单,我们直接把\(S\)拉到\(T\)的\(SAM\)上去跑,如果跑不动了就停下来,重新回到 ...

随机推荐

  1. js 相关好文章推荐

    1.关于xmlhttprequest https://segmentfault.com/a/1190000004322487 2.XMLHttpRequest2 新技巧 https://www.htm ...

  2. js:获取单选组radio中的被选择的数据

    现在有一name为sex的单选组,代表的是选择性别,要求获取radio中被选择的选项值 <div class="sexDiv"> 用户性别: <input cla ...

  3. Eclipse解除已关联的Coding远程仓库,重新关联github上的远程仓库

    1.在Eclipse中的Git Repositories中找到要解除的仓库,依次找到Remote--origin[视自己的实际情况选择], 2.选中origin,右键选择Delete Remote , ...

  4. [APIO2019] [LOJ 3145] 桥梁(分块+并查集)(有详细注释)

    [APIO2019] [LOJ 3145] 桥梁(分块+并查集)(有详细注释) 题面 略 分析 考试的时候就感觉子任务4是突破口,结果却写了个Kruskal重构树,然后一直想怎么在线用数据结构维护 实 ...

  5. python 重点理论知识点

    Python多线程 GIL blablabla concurrent blablabla 简单地说就是作为可能是仅有的支持多线程的解释型语言(perl的多线程是残疾,PHP没有多线程),Python的 ...

  6. (一:NIO系列)JAVA NIO 简介

    出处:JAVA NIO 简介 Java 中 New I/O类库 是由 Java 1.4 引进的异步 IO.由于之前老的I/O类库是阻塞I/O,New I/O类库的目标就是要让Java支持非阻塞I/O, ...

  7. 在react中用装饰器来装饰connect

    假设我们在react中有如下header组件: import React, { PureComponent } from 'react'; import { connect } from 'react ...

  8. struts2 spring 优缺点

    struts框架具有组件的模块化,灵活性和重用性的优点,同时简化了基于MVC的web应用程序的开发.优点:Struts跟Tomcat.Turbine等诸多Apache项目一样,是开源软件,这是它的一大 ...

  9. python如何查看内存占用空间

    我们如何查看变量占用了多少内存空间呢 首先我们引用sys模块,在使用getsizeof()方法 import sys L = [x for x in range(10000)] print(sys.g ...

  10. git clone的低级错误

    犯了一个低级错误: server ip: 192.168.40.41 有一个git账户 所有的git仓库都在/home/git仓库下 比如/home/git/u-boot-2018.07-fmxx.g ...