tensorflow源码分析——CTC
CTC是2006年的论文Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks中提到的,论文地址: http://www.cs.toronto.edu/~graves/icml_2006.pdf
论文中CTC的定义是这样的:把对未分割的序列数据label的任务叫做Temporal Classification,把使用RNNs对未分割的序列数据label叫做Connectionist Temporal Classification(CTC) 。与之相对的是,把对数据序列的每一个time-step或者frame独立label 叫做framewise classification
tensorflow中的相关实现在 /tensorflow/python/ops/ctc_ops.py
1. ctc_loss, 计算ctc loss
def ctc_loss(labels, inputs, sequence_length,
preprocess_collapse_repeated=False,
ctc_merge_repeated=True, time_major=True):
这个类执行softmax操作,所以输入应该是LSTM输出的线性映射
inputs, 最内部维度大小是num_classes,代表“num_labels +1” 个类别,其中num_labels是真实的balebs的数目,最大值“num_labels-1”是为blank label保留的
例如,如果一个单词包含3个labels ‘[a, b, c]’,则num_classes =4, 且labels的索引号是 ‘{a:0, b:1, c:2, blank:3}’
至于参数 preprocess_collapse_repeated 和 ctc_merge_repeated:
如果 preprocess_collapse_repeated = True ,在计算ctc之前,重复的labels会被合并为一个labels。这种预处理对下面这种情况是有用的:如果训练数据是强制对齐得到的,会包含不必要的重复。
如果 ctc_merge_repeated = False,那么伴随ctc计算的深入,重复的非blank将不会被合并,会被解释为独立的labels。这是ctc的简化的非标准的版本
具体见下表
- preprocess_collapse_repeated = False,ctc_merge_repeated = True:经典CTC,输出的真实的重复的中间带有blanks类别,也可以通过解码器解码,输出不带有blanks的重复类别
- preprocess_collapse_repeated = True,ctc_merge_repeated = False:因为在training之前,input 的labels已经合并重复项了,所以不会输出重复的类
- preprocess_collapse_repeated = False,ctc_merge_repeated = False:输出重复的中间带有blank的类别,但是通常不需要解码器合并重复项
- preprocess_collapse_repeated = True,ctc_merge_repeated = True: 未测试,非常可能不会学会输出重复类
参数:
labels: int32 SparseTensor, 标准的输出,稀疏矩阵
inputs: 3-D float tensor . 计算得到的logits。 如果time_major = False, shape:batch_size x max_time x num_classes. 如果 time_major = True, shape:max_time x batch_size x num_classes
sequence_length: 1-D int32 向量, batch_size
输出:
1-D float tensor,size:[batch], 概率的负对数
2. ctc_beam_search_decoder: 对输入的logits执行beam search 解码
def ctc_beam_search_decoder(inputs, sequence_length, beam_width=100,
top_paths=1, merge_repeated=True):
如果 merge_repeated = True, 在输出的beam中合并重复类。这意味着如果一个beam中的连续项( consecutive entries) 相同,只有第一个提交。即,如果top path 是‘A B B B ’,返回值是‘A B’(当merge_repeated = True),‘A B B B ’ (当merge_repeated = False)
参数:
inputs: 3-D float tensor , shape:max_time x batch_size x num_classes
sequence_length: 1-D int32 向量, batch_size
beam_width: int scalar>=0
top_paths: int scalar>=0, <= beam_width, 输出解码后的数目
输出:
元组:(decoded, log_prob)
其中:
decoded : a list of length top_paths, 每一个是一个稀疏矩阵
log_prob : matrix , shape (batch_size x top_paths)
tensorflow源码分析——CTC的更多相关文章
- tensorflow源码分析
前言: 一般来说,如果安装tensorflow主要目的是为了调试些小程序的话,只要下载相应的包,然后,直接使用pip install tensorflow即可. 但有时我们需要将Tensorflow的 ...
- tensorflow源码分析——BasicLSTMCell
BasicLSTMCell 是最简单的LSTMCell,源码位于:/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py.BasicLSTMC ...
- tensorflow源码分析——LSTMCell
LSTMCell 是最简单的LSTMCell,源码位于:/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py.LSTMCell 继承了RNN ...
- 图解tensorflow 源码分析
http://www.cnblogs.com/yao62995/p/5773578.html https://github.com/yao62995/tensorflow
- [tensorflow源码分析] Conv2d卷积运算 (前向计算,反向梯度计算)
- [图解tensorflow源码] 入门准备工作附常用的矩阵计算工具[转]
[图解tensorflow源码] 入门准备工作 附常用的矩阵计算工具[转] Link: https://www.cnblogs.com/yao62995/p/5773142.html tensorf ...
- [图解tensorflow源码] 入门准备工作
tensorflow使用了自动化构建工具bazel.脚本语言调用c或cpp的包裹工具swig.使用EIGEN作为矩阵处理工具.Nvidia-cuBLAS GPU加速计算库.结构化数据存储格式prot ...
- [图解tensorflow源码] [原创] Tensorflow 图解分析 (Session, Graph, Kernels, Devices)
TF Prepare [图解tensorflow源码] 入门准备工作 [图解tensorflow源码] TF系统概述篇 Session篇 [图解tensorflow源码] Session::Run() ...
- TensorFlow源码框架 杂记
一.为什么我们需要使用线程池技术(ThreadPool) 线程:采用“即时创建,即时销毁”策略,即接受请求后,创建一个新的线程,执行任务,完毕后,线程退出: 线程池:应用软件启动后,立即创建一定数量的 ...
随机推荐
- docker安装笔记
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相 ...
- 工具使用——使用XShell连接linux系统
1.首先到官网取下载一个XShell安装包,根据提示安装成功. 2.打开软件,点击新建连接 3.在新建连接页面输入,主机名称.主机地址.端口号,点击确定按钮. 4.在弹出的会话窗口中,选中我们刚刚创建 ...
- centos7 mysql 各种报错
1.重置root密码 vi /etc/my.cnf 添加skip-grant-tables service mysqld restart 2.mysql 登录 报错1 Unknown system v ...
- 爬虫笔记八——Scrapy实战项目
(案例一)手机App抓包爬虫 1. items.py import scrapy class DouyuspiderItem(scrapy.Item): # 存储照片的名字 nickName = sc ...
- 018-zabbix_api
Zabbix API 简介 Zabbix API 开始扮演着越来越重要的角色,尤其是在集成第三方软件和自动化日常任务时. 很难想象管理数千台服务器而没有自动化是多么的困难. Zabbix API 为批 ...
- [BZOJ1299]巧克力棒(博弈论,线性基)
[BZOJ1299]巧克力棒 Description TBL和X用巧克力棒玩游戏.每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度.TBL先手两人轮流,无法操作的人输. ...
- Connection refused 排查过程
Connection refused 排查过程 connection refused 排查 起因 今天在连接 rabbitmq 时,报 Connection refused (如下图),借此机会记 ...
- event对象中offsetX,clientX,pageX,screenX的区别
1.offsetXoffset意为偏移量,是事件对象距左上角为参考原点的距离.以元素盒子模型的内容区域的左上角为参考点.不包括border.2.clientX事件对象相对于浏览器窗口可视区域的X,Y坐 ...
- 详解WebService开发中四个常见问题(2)
详解WebService开发中四个常见问题(2) WebService开发中经常会碰到诸如WebService与方法重载.循环引用.数据被穿该等等问题.本文会给大家一些很好的解决方法. AD:WO ...
- chrome模拟慢速3G网络
谷歌调试控制台中network中可以设置,add为自定义