题目如下:

On an infinite number line (x-axis), we drop given squares in the order they are given.

The i-th square dropped (positions[i] = (left, side_length)) is a square with the left-most point being positions[i][0] and sidelength positions[i][1].

The square is dropped with the bottom edge parallel to the number line, and from a higher height than all currently landed squares. We wait for each square to stick before dropping the next.

The squares are infinitely sticky on their bottom edge, and will remain fixed to any positive length surface they touch (either the number line or another square). Squares dropped adjacent to each other will not stick together prematurely.

Return a list ans of heights. Each height ans[i]represents the current highest height of any square we have dropped, after dropping squares represented by positions[0], positions[1], ..., positions[i].

Example 1:

Input: [[1, 2], [2, 3], [6, 1]]
Output: [2, 5, 5]
Explanation:

After the first drop of positions[0] = [1, 2]: _aa _aa ------- The maximum height of any square is 2.

After the second drop of positions[1] = [2, 3]: __aaa __aaa __aaa _aa__ _aa__ -------------- The maximum height of any square is 5. The larger square stays on top of the smaller square despite where its center of gravity is, because squares are infinitely sticky on their bottom edge.

After the third drop of positions[1] = [6, 1]: __aaa __aaa __aaa _aa _aa___a -------------- The maximum height of any square is still 5. Thus, we return an answer of [2, 5, 5].

Example 2:

Input: [[100, 100], [200, 100]]
Output: [100, 100]
Explanation: Adjacent squares don't get stuck prematurely - only their bottom edge can stick to surfaces.

Note:

  • 1 <= positions.length <= 1000.
  • 1 <= positions[i][0] <= 10^8.
  • 1 <= positions[i][1] <= 10^6.

解题思路:positions.length最大是1000,因此解题算法的时间复杂度应该允许在O(n^2)。O(n^2)的解法也很简单直接,遍历positions,把positions[i]与positions[0]~positions[i-1]之前的所有元素比较检查是否有相交,如果与positions[j]相交,那么positions[i]的高度就是positions[j]的高度加上positions[i]自身的高度。

代码如下:

class Solution(object):
def fallingSquares(self, positions):
"""
:type positions: List[List[int]]
:rtype: List[int]
"""
history = []
res = []
altitude = []
for i, (pos,length) in enumerate(positions):
altitude.append(length)
for j,(hisPos,hisLength) in enumerate(history):
if (pos + length <= hisPos or hisPos + hisLength <= pos) == False:
altitude[-1] = max(altitude[-1],length+altitude[j])
if len(res) == 0:
res.append(altitude[-1])
else:
res.append(max(res[-1],altitude[-1]))
history.append([pos,length])
return res

【leetcode】699. Falling Squares的更多相关文章

  1. 【LeetCode】279. Perfect Squares 解题报告(C++ & Java)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 四平方和定理 动态规划 日期 题目地址:https: ...

  2. 【LeetCode】840. Magic Squares In Grid 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 利用河图规律 暴力解法 日期 题目地址:https: ...

  3. 【LeetCode】并查集 union-find(共16题)

    链接:https://leetcode.com/tag/union-find/ [128]Longest Consecutive Sequence  (2018年11月22日,开始解决hard题) 给 ...

  4. 【leetcode】688. Knight Probability in Chessboard

    题目如下: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  5. 【LeetCode】838. Push Dominoes 解题报告(Python)

    [LeetCode]838. Push Dominoes 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http:// ...

  6. 【LeetCode】Minimum Depth of Binary Tree 二叉树的最小深度 java

    [LeetCode]Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum dept ...

  7. 【Leetcode】Pascal&#39;s Triangle II

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3 ...

  8. 53. Maximum Subarray【leetcode】

    53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...

  9. 27. Remove Element【leetcode】

    27. Remove Element[leetcode] Given an array and a value, remove all instances of that value in place ...

随机推荐

  1. 30 August

    DP 复习. 参考 redbag 博客 提供的题表. P2858 [USACO06FEB] Treats for the Cows 区间 DP. 转换思路,题面从外往里递推,我们采用从里往外递推,权值 ...

  2. 29 August

    P1352 Bosses' Masquerade 树形DP模板. #include <cstdio> #include <algorithm> using namespace ...

  3. 简易的Web自动化链接测试(Xenu)

    1.理解链接需要测试的测试点: [1] 要测试的链接页面是否存在 [2] 确定存在链接页面,然后就考虑跳转后的页面是不是对应需求的页面[3] 保证Web系统上没有孤立的页面(没有链接指向该页面) 2. ...

  4. Solidworks 2019 无法获得下列许可solidworks standard无效的(不一致的)使用许可号码(-8,544,0)

    若出现如下述错误,只需将C:\***(C盘中生成注册表的文件夹)\Program Files\SOLIDWORKS Corp\SOLIDWORKS下的netapi32.dll文件复制到所安装路径中SO ...

  5. 【OPCAutomation】 使用OPCAutomation实现对OPC数据的访问

    折腾了一段时间研究OPC,理清了下位机.OPCServer 和OPCClient的关系和通信模型,终于能够来写一篇相关的博客了. 我们使用西门子的 S7 200 SMART作为下位机端,通过3G路由器 ...

  6. 测开之路七十一:监控平台之js

    监控平台的js //datetimepicker的初始化函数(主要是对选择时间的下拉框)function init_datetimepicker() { //初始化格式和规则 $('#start'). ...

  7. 数据库学习之mysql数据库

    参考链接网站: http://c.biancheng.net/view/2361.html Mysql的版本以及版本号 MySQL Community Server(社区版):该版本完全免费,但是官方 ...

  8. (转载)Spring与SpringMVC父子容器的关系与初始化

    转自 https://blog.csdn.net/dhaiuda/article/details/80026354 Spring和SpringMVC的容器具有父子关系,Spring容器为父容器,Spr ...

  9. Netty之揭开BootStrap 的神秘面纱

    客户端BootStrap: Bootstrap 是Netty 提供的一个便利的工厂类, 我们可以通过它来完成Netty 的客户端或服务器端的Netty 初始化.下面我先来看一个例子, 从客户端和服务器 ...

  10. 链接层-UDP

    五大特点:无连接,不可靠,面向报文传输,没有拥塞控制,首部开销小