题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=2213

https://loj.ac/problem/2161

题解

做一道简单题来放松一下。

不过这道题细节挺多的,可以作为一道练细节的好题。

直接钦定出现最多的字母和出现最少的字母,这样把原序列转化成 \(\pm1\) 的序列做最大字段和就可以了。

我们可以在扫这个序列的时候用一个数组 \(s[i][j]\) 表示以 \(i\) 为出现最少的,\(j\) 为出现最多的的最大子段和,直接更新维护就可以了。

但是这样会有一个问题,如果有一段区间 \(i\) 这个字符根本没有出现,会被 \(s\) 的维护算作 \(0\) 次从而使答案错误。我们只需要在更新的时候记录一下当前 \(s[i][j]\) 的当前一个子段是否出现了 \(i\),未出现就不更新答案。

但是这样还会有一个问题。如果 \(i\) 出现在答案子串的第一位,那么就不会被统计到,而会一直认为没有出现。(因为最大子段和的贪心策略直接把它跟扔掉了)

所幸就只有这一种情况会出错,可以特判一下。我比较懒就直接把整个串倒着继续做了一遍。


下面是代码。由于字符串的每一位只会影响到 \(s\) 数组的 \(26-1+26-1\) 个元素,因此时间复杂度为 \(O(50n)\)。(这个东西不能叫复杂度吧,里面写了常数啊)

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 1000000 + 7; int n;
int ss[26][26], sp[26][26], gg[26];
char s[N]; inline void work() {
int ans = 0, bg = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < 26; ++j) if (s[i] - 'a' != j) {
if (ss[s[i] - 'a'][j]) ss[s[i] - 'a'][j]--, sp[s[i] - 'a'][j] = 1;
else ss[s[i] - 'a'][j] = 0, sp[s[i] - 'a'][j] = 0;
sp[s[i] - 'a'][j] && smax(ans, ss[s[i] - 'a'][j]);
}
for (int j = 0; j < 26; ++j) if (s[i] - 'a' != j) ++ss[j][s[i] - 'a'], sp[j][s[i] - 'a'] && smax(ans, ss[j][s[i] - 'a']);
}
memset(ss, 0, sizeof(ss));
memset(sp, 0, sizeof(sp));
for (int i = n; i; --i) {
for (int j = 0; j < 26; ++j) if (s[i] - 'a' != j) {
if (ss[s[i] - 'a'][j]) ss[s[i] - 'a'][j]--, sp[s[i] - 'a'][j] = 1;
else ss[s[i] - 'a'][j] = 0, sp[s[i] - 'a'][j] = 0;
sp[s[i] - 'a'][j] && smax(ans, ss[s[i] - 'a'][j]);
}
for (int j = 0; j < 26; ++j) if (s[i] - 'a' != j) ++ss[j][s[i] - 'a'], sp[j][s[i] - 'a'] && smax(ans, ss[j][s[i] - 'a']);
printf("%d\n", ans);
} inline void init() {
read(n);
scanf("%s", s + 1);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

BZOJ2213 & LOJ2161 「POI2011 R2 Day1」Difference 最大子段和的更多相关文章

  1. 「POI2011 R2 Day2」Tree Rotations【线段树合并】

    题目链接 [BZOJ] [洛谷] [LOJ] 题解 由于是前序遍历,那么讨论一棵树上的逆序对的情况. 两个节点都在左子树上 两个节点都在右子树上 两个节点分别在不同的子树上. 前两种情况其实也可以归结 ...

  2. 【LOJ】#3032. 「JOISC 2019 Day1」馕

    LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...

  3. 【LOJ】#3031. 「JOISC 2019 Day1」聚会

    LOJ#3031. 「JOISC 2019 Day1」聚会 听说随机可过? 我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链 ...

  4. 【LOJ】#3030. 「JOISC 2019 Day1」考试

    LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- ...

  5. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  6. 「BalkanOI 2018 Day1」Election

    「BalkanOI 2018 Day1」Election 记C为1,T为-1,\(sum[i]\)为\(i\)点的前缀和. 对于询问\([l,r]\),分两步计算答案. 要求所有点的\(sum[i]- ...

  7. 「BalkanOI 2018 Day1」Minmaxtree

    「BalkanOI 2018 Day1」Minmaxtree 每个点都有一个最大和最小权值的限制. 然后每一个权值的限制都必须要取到. 每个点显然可以直接让他取到最大或最小权值. 可以想到每个点匹配一 ...

  8. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

  9. LOJ#2632. 「BalticOI 2011 Day1」打开灯泡 Switch the Lamp On

    题目描述 译自 BalticOI 2011 Day1 T3「Switch the Lamp On」有一种正方形的电路元件,在它的两组相对顶点中,有一组会用导线连接起来,另一组则不会.有 N×M 个这样 ...

随机推荐

  1. POJ 3728 The merchant (树形DP+LCA)

    题目:https://vjudge.net/contest/323605#problem/E 题意:一棵n个点的树,然后有m个查询,每次查询找(u->v)路径上的两个数,a[i],a[j],(i ...

  2. 架构-SOA:SOA(面向服务的架构)

    ylbtech-架构-SOA:SOA(面向服务的架构) 面向服务的架构(SOA)是一个组件模型,它将应用程序的不同功能单元(称为服务)进行拆分,并通过这些服务之间定义良好的接口和契约联系起来.接口是采 ...

  3. PHP-密码和token

    密码 直接 md5 和 sha1 不安全!!! crypt() 和 hash_equals(): http://php.net/manual/zh/function.crypt.php <?ph ...

  4. 数据可视化-D3js-展示古地理图和古地理坐标反算^_^gplates古地理坐标反算接口

    在线演示 <!DOCTYPE html> <html> <head> <link type="image/png" rel="i ...

  5. day03—JavaScript中DOM的Event事件方法

    转行学开发,代码100天——2018-03-19 1.Event 对象 Event 对象代表事件的状态,比如事件在其中发生的元素.键盘按键的状态.鼠标的位置.鼠标按钮的状态. 事件通常与函数结合使用, ...

  6. java sftp.exec无法执行mv命令

    编写java程序过程中,sftp上传下载建目录删除文件都可以,就是备份不行. 分析原因如下: 1.如果用的同一个用户,即sftp用户来通过 exec(ssh连接) 执行mv命令,那极有可能是在搭建sf ...

  7. delphi 神经网络 学习

    https://github.com/uldercarrilho/ParallelNeuralNetwork

  8. Ubuntu安装byzanz截取动态效果图

    byzanz-record主要参数选项 用法: byzanz-record [选项...] 录制您的当前桌面会话 帮助选项: -?, --help 显示帮助选项 --help-all 显示全部帮助选项 ...

  9. C#静态变量总结

    1.初始化 全局static变量的初始化在编译的时候进行,并且只初始化一次 . 函数static变量在函数中有效,第一次进入函数初始化.以后进入函数将沿用上一次的值.  2.生命期 全局static变 ...

  10. LayUI Table复杂表头实现

    LayUI table官方文档中在介绍复杂表头时的用例仅使用了自动渲染的方式作为参考,而并未用到方法渲染的方式来做用例,这让部分不太熟悉layUI table的开发者会有些头疼,不知道如何在方法渲染中 ...