题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=2213

https://loj.ac/problem/2161

题解

做一道简单题来放松一下。

不过这道题细节挺多的,可以作为一道练细节的好题。

直接钦定出现最多的字母和出现最少的字母,这样把原序列转化成 \(\pm1\) 的序列做最大字段和就可以了。

我们可以在扫这个序列的时候用一个数组 \(s[i][j]\) 表示以 \(i\) 为出现最少的,\(j\) 为出现最多的的最大子段和,直接更新维护就可以了。

但是这样会有一个问题,如果有一段区间 \(i\) 这个字符根本没有出现,会被 \(s\) 的维护算作 \(0\) 次从而使答案错误。我们只需要在更新的时候记录一下当前 \(s[i][j]\) 的当前一个子段是否出现了 \(i\),未出现就不更新答案。

但是这样还会有一个问题。如果 \(i\) 出现在答案子串的第一位,那么就不会被统计到,而会一直认为没有出现。(因为最大子段和的贪心策略直接把它跟扔掉了)

所幸就只有这一种情况会出错,可以特判一下。我比较懒就直接把整个串倒着继续做了一遍。


下面是代码。由于字符串的每一位只会影响到 \(s\) 数组的 \(26-1+26-1\) 个元素,因此时间复杂度为 \(O(50n)\)。(这个东西不能叫复杂度吧,里面写了常数啊)

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 1000000 + 7; int n;
int ss[26][26], sp[26][26], gg[26];
char s[N]; inline void work() {
int ans = 0, bg = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < 26; ++j) if (s[i] - 'a' != j) {
if (ss[s[i] - 'a'][j]) ss[s[i] - 'a'][j]--, sp[s[i] - 'a'][j] = 1;
else ss[s[i] - 'a'][j] = 0, sp[s[i] - 'a'][j] = 0;
sp[s[i] - 'a'][j] && smax(ans, ss[s[i] - 'a'][j]);
}
for (int j = 0; j < 26; ++j) if (s[i] - 'a' != j) ++ss[j][s[i] - 'a'], sp[j][s[i] - 'a'] && smax(ans, ss[j][s[i] - 'a']);
}
memset(ss, 0, sizeof(ss));
memset(sp, 0, sizeof(sp));
for (int i = n; i; --i) {
for (int j = 0; j < 26; ++j) if (s[i] - 'a' != j) {
if (ss[s[i] - 'a'][j]) ss[s[i] - 'a'][j]--, sp[s[i] - 'a'][j] = 1;
else ss[s[i] - 'a'][j] = 0, sp[s[i] - 'a'][j] = 0;
sp[s[i] - 'a'][j] && smax(ans, ss[s[i] - 'a'][j]);
}
for (int j = 0; j < 26; ++j) if (s[i] - 'a' != j) ++ss[j][s[i] - 'a'], sp[j][s[i] - 'a'] && smax(ans, ss[j][s[i] - 'a']);
printf("%d\n", ans);
} inline void init() {
read(n);
scanf("%s", s + 1);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

BZOJ2213 & LOJ2161 「POI2011 R2 Day1」Difference 最大子段和的更多相关文章

  1. 「POI2011 R2 Day2」Tree Rotations【线段树合并】

    题目链接 [BZOJ] [洛谷] [LOJ] 题解 由于是前序遍历,那么讨论一棵树上的逆序对的情况. 两个节点都在左子树上 两个节点都在右子树上 两个节点分别在不同的子树上. 前两种情况其实也可以归结 ...

  2. 【LOJ】#3032. 「JOISC 2019 Day1」馕

    LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...

  3. 【LOJ】#3031. 「JOISC 2019 Day1」聚会

    LOJ#3031. 「JOISC 2019 Day1」聚会 听说随机可过? 我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链 ...

  4. 【LOJ】#3030. 「JOISC 2019 Day1」考试

    LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- ...

  5. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  6. 「BalkanOI 2018 Day1」Election

    「BalkanOI 2018 Day1」Election 记C为1,T为-1,\(sum[i]\)为\(i\)点的前缀和. 对于询问\([l,r]\),分两步计算答案. 要求所有点的\(sum[i]- ...

  7. 「BalkanOI 2018 Day1」Minmaxtree

    「BalkanOI 2018 Day1」Minmaxtree 每个点都有一个最大和最小权值的限制. 然后每一个权值的限制都必须要取到. 每个点显然可以直接让他取到最大或最小权值. 可以想到每个点匹配一 ...

  8. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

  9. LOJ#2632. 「BalticOI 2011 Day1」打开灯泡 Switch the Lamp On

    题目描述 译自 BalticOI 2011 Day1 T3「Switch the Lamp On」有一种正方形的电路元件,在它的两组相对顶点中,有一组会用导线连接起来,另一组则不会.有 N×M 个这样 ...

随机推荐

  1. cenos中的软件安装

    在linux中安装flash:  http://jingyan.baidu.com/article/fa4125accdeeec28ad709252.html linux java环境的搭建:

  2. laravel的使用

    1.先下载composer.phar 下载地址:https://getcomposer.org/download/ 把composer.phar拷贝到自己的项目目录中,执行以下代码: php comp ...

  3. php Closure类 闭包 匿名函数

    php匿名函数 匿名函数就是没有名称的函数.匿名函数可以赋值给变量,还能像其他任何PHP对象那样传递.不过匿名函数仍是函数,因此可以调用,还可以传入参数.匿名函数特别适合作为函数或方法的回调. 如: ...

  4. 129、TensorFlow计算图的可视化

    import tensorflow as tf # Build your graph x = tf.constant([[37.0, -23.0], [1.0, 4.0]], name="i ...

  5. vm虚拟机用批处理启动和关闭

    title vmware 虚拟机开启中 cls&&echo 正在开启VMware虚拟机,请稍候... "D:\vmware\vmware.exe" -x " ...

  6. fiddler抓取火狐浏览器上https协议请求

    前言:现在很多网站采用https协议,当打开fiddler时.浏览https协议的网站会提示不安全,若使用fiddler抓取https协议的请求,则需要向浏览器导入证书,才能抓取https协议的请求, ...

  7. HTML设置<table>的<td>横跨3列

    第一步:html中 <table> <tr> <td>列一</td> <td>列二</td> <td>列三</ ...

  8. python的包

    1. 无论是import形式还是from...import形式,凡是在导入语句中(而不是在使用时)遇到带点的,都要第一时间提高警觉:这是关于包才有的导入语法 2. 包是目录级的(文件夹级),文件夹是用 ...

  9. Windows下Nginx的启动、停止、重启等命令

    Windows下Nginx的启动.停止等命令 在Windows下使用Nginx,我们需要掌握一些基本的操作命令,比如:启动.停止Nginx服务,重新载入Nginx等,下面我就进行一些简单的介绍. 假设 ...

  10. 解决ubuntu下eth0不显示

    今天电脑重启之后,用ifconfig查看网络地址,就发现eth0神奇的消失了,顿时感觉吓尿了. 按照网上看到的资料,发现输入ifconfig -a 发现可以显示eth0,但是当输入ifconfig就没 ...