「CTS2019 | CTSC2019」氪金手游 解题报告
「CTS2019 | CTSC2019」氪金手游
降 智 好 题 ...
考场上签到失败了,没想容斥就只打了20分暴力...
考虑一个事情,你抽中一个度为0的点,相当于把这个点删掉了(当然你也只能抽中度为0的点)
删掉就是字面意思,就是剩下的树变成子问题
考虑为什么,在抽中这个\(i\)号点后,抽中其他点的概率为
\]
说明这个点已经白给了
然后考虑这个树如果是一颗外向树,就是每个点先父亲再自己
有个比较显然的dp,令\(dp_{i,j}\)表示子树\(i\)的\(\sum w=j\)时的概率,转移的时候合并一下子树就好了
然后考虑到,树上一条边相当于一个限制,如果我们去掉这个限制,会多统计一些东西,但是也可以发现,这个多统计的东西就是把边反向的答案...
还是令\(dp_{i,j}\)代表刚刚那个
如果边正向就正常转移
如果反向,就加上去掉限制的再减掉反向的答案(注意到去掉限制的是独立的,我们不需要改变\(W\),只是给他合并一下)
Code:
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
using std::min;
const int SIZE=1<<21;
char ibuf[SIZE],*iS,*iT;
//#define gc() (iS==iT?(iT=(iS=ibuf)+fread(ibuf,1,SIZE,stdin),iS==iT?EOF:*iS++):*iS++)
#define gc() getchar()
template <class T>
void read(T &x)
{
x=0;char c=gc();
while(!isdigit(c)) c=gc();
while(isdigit(c)) x=x*10+c-'0',c=gc();
}
const int mod=998244353;
int inline add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
#define mul(x,y) (1ll*(x)*(y)%mod)
int qp(int d,int k){int f=1;while(k){if(k&1)f=mul(f,d);d=mul(d,d),k>>=1;}return f;}
const int N=1e3+10;
int n,p[N][4],dp[N][N*3],tmp[N*3],siz[N],inv[N*3];
int head[N],to[N<<1],Next[N<<1],type[N<<1],cnt;
void addedge(int u,int v)
{
to[++cnt]=v,type[cnt]=1,Next[cnt]=head[u],head[u]=cnt;
to[++cnt]=u,type[cnt]=0,Next[cnt]=head[v],head[v]=cnt;
}
void dfs(int now,int fa)
{
dp[now][0]=1;
for(int v,i=head[now];i;i=Next[i])
if((v=to[i])!=fa)
{
dfs(v,now);
memset(tmp,0,sizeof tmp);
for(int j=0;j<=siz[now];j++)
for(int k=0;k<=siz[v];k++)
{
int aya=mul(dp[now][j],dp[v][k]);
if(type[i])
tmp[j+k]=add(tmp[j+k],aya);
else
{
tmp[j+k]=add(tmp[j+k],mod-aya);
tmp[j]=add(tmp[j],aya);
}
}
siz[now]+=siz[v];
for(int j=0;j<=siz[now];j++) dp[now][j]=tmp[j];
}
memset(tmp,0,sizeof tmp);
for(int i=0;i<=siz[now];i++)
for(int j=1;j<=3;j++)
tmp[i+j]=add(tmp[i+j],mul(dp[now][i],mul(p[now][j],mul(j,inv[i+j]))));
siz[now]+=3;
for(int i=0;i<=siz[now];i++)
dp[now][i]=tmp[i];
}
int main()
{
read(n);
for(int a1,a2,a3,i=1;i<=n;i++)
{
read(a1),read(a2),read(a3);
int sum=qp(a1+a2+a3,mod-2);
p[i][1]=mul(a1,sum);
p[i][2]=mul(a2,sum);
p[i][3]=mul(a3,sum);
}
inv[0]=1;
for(int i=1;i<=n*3;i++) inv[i]=qp(i,mod-2);
for(int u,v,i=1;i<n;i++)
{
read(u),read(v);
addedge(u,v);
}
dfs(1,0);
int ans=0;
for(int i=0;i<=3*n;i++) ans=add(ans,dp[1][i]);
printf("%d\n",ans);
return 0;
}
2019.5.20
「CTS2019 | CTSC2019」氪金手游 解题报告的更多相关文章
- Loj #3124. 「CTS2019 | CTSC2019」氪金手游
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...
- LOJ 3124 「CTS2019 | CTSC2019」氪金手游——概率+树形DP
题目:https://loj.ac/problem/3124 看了题解:https://www.cnblogs.com/Itst/p/10883880.html 先考虑外向树. 考虑分母是 \( \s ...
- 「CTS2019」氪金手游
「CTS2019」氪金手游 解题思路 考场上想出了外向树的做法,居然没意识到反向边可以容斥,其实外向树会做的话这个题差不多就做完了. 令 \(dp[u][i]\) 表示单独考虑 \(u\) 节点所在子 ...
- 「CTS2019 | CTSC2019」随机立方体 解题报告
「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- 【LOJ】#3121. 「CTS2019 | CTSC2019」无处安放
第一次有耐心去研究一道题答-- 以前看到题答要么扔要么就水能简单手玩出来的 1 2可以手玩出来,快乐! 4呢发现3 3比较格路,就把3 3都配了,一边带个4的除了4 4都塞满这么放进去,然后把一边带2 ...
- LOJ 3119: 洛谷 P5400: 「CTS2019 | CTSC2019」随机立方体
题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\ ...
- LOJ 3120: 洛谷 P5401: 「CTS2019 | CTSC2019」珍珠
题目传送门:LOJ #3120. 题意简述: 称一个长度为 \(n\),元素取值为 \([1,D]\) 的整数序列是合法的,当且仅当其中能够选出至少 \(m\) 对相同元素(不能重复选出元素). 问合 ...
- loj3120 「CTS2019 | CTSC2019」珍珠
link .... 感觉自己太颓废了....还是来更题解吧...[话说写博客会不会涨 rp 啊 qaq ? 题意: 有 n 个物品,每个都有一个 [1,D] 中随机的颜色,相同颜色的两个物品可以配对. ...
随机推荐
- springbootboot 语句
-- ------------------------------ Table structure for `user`-- ----------------------------DROP TABL ...
- 内核设备模型从kobject到子系统
内核设备模型 目的:表示设备和设备在系统中的拓扑关系 优点:1减少内核代码量,2可以统一查看所有设备状态和所连接的总线,3可以 ...
- centos7.5部署ELk
第1章 环境规划 1.1 ELK介绍 ELK是ElasticSerach.Logstash.Kibana三款产品名称的首字母集合,用于日志的搜集和搜索. Elasticsearc ...
- paper 143:人脸验证
持续更新ing,敬请期待! 参考:http://blog.csdn.net/stdcoutzyx/article/details/42091205 1. DeepID人脸识别算法 香港中文大学的团队 ...
- webpack配置教程
1.npm脚本运行webpack与命令行输入webpack的区别 : https://segmentfault.com/a/1190000011052193 npm 模块的 安装 和 卸载 : ...
- 优化问题及KKT条件
整理自其他优秀博文及自己理解. 目录 无约束优化 等式约束 不等式约束(KKT条件) 1.无约束优化 无约束优化问题即高数下册中的 “多元函数的极值" 部分. 驻点:所有偏导数皆为0的点: ...
- Java学习之面向对象---继承
继承:子继承父,子可以拥有父的所有. 继承的好处: 1.提高了代码的复用性 2.让类与类之间产生了关系.有了这个关系,才有了多态的特性 Java 只支持单继承,不支持多继承 class A { voi ...
- java.lang -> Object
java.lang -> Object 是什么 Object 类是类层次结构的根,是 Java 中唯一一个没有父类的类,Java 中所有对象包括数组都继承了 Object 类中的方法. 重要方法 ...
- docker内的服务无法获取用户真实IP
原文:blog.baohaipeng.top 背景:MySQL数据库和Redis运行在宿主机上(Linux),server运行在docker内,web运行在Nginx内(Nginx运行在docker内 ...
- RedisTemplate序列号自增id(当前日期+序列号)
话不多上,直接上码 public class TestService { @Resource RedisTemplate<String, Object> redisTemplate; pu ...