I - Balancing Act POJ - 1655
For example, consider the tree:
Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.
For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.
Input
Output
Sample Input
1
7
2 6
1 2
1 4
4 5
3 7
3 1
Sample Output
1 2
树形DP,注意考虑n-sum[u]这个搜索方向的联通点集
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 200099
#define L 31
#define INF 1000000009
#define eps 0.00000001
#define sf(a) scanf("%d",&a)
/*
dp[i] 记录i点除去偶的最大点集点数
sum[i] 记录所有子节点数目
*/
struct edge
{
int to, next;
}E[MAXN];
int sum[MAXN], dp[MAXN], head[MAXN];
int t, n, cnt;
void addedge(int f,int t)
{
E[cnt].to = t;
E[cnt].next = head[f];
head[f] = cnt++;
}
void init()
{
memset(sum, , sizeof(sum));
memset(dp, , sizeof(dp));
memset(head, -, sizeof(head));
cnt = ;
}
void dfs(int u, int pre)
{
sum[u] = dp[u] = ;
for (int i = head[u]; i != -; i = E[i].next)
{
int v = E[i].to;
if (v == pre) continue;
dfs(v, u);
sum[u] += sum[v];
dp[u] = max(dp[u], sum[v]);
}
dp[u] = max(dp[u], n - sum[u]);
}
int main()
{
sf(t);
while (t--)
{
init();
sf(n);
for (int i = ; i < n - ; i++)
{
int a, b;
sf(a), sf(b);
addedge(a, b);
addedge(b, a);
}
dfs(, -);
int ans = INF, k = -;
for (int i = ; i <= n; i++)
{
if (dp[i] < ans)
{
k = i, ans = dp[i];
}
}
printf("%d %d\n", k, ans);
}
}
I - Balancing Act POJ - 1655的更多相关文章
- Balancing Act POJ - 1655 (树的重心)
Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the t ...
- POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)
关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...
- POJ 1655 Balancing Act&&POJ 3107 Godfather(树的重心)
树的重心的定义是: 一个点的所有子树中节点数最大的子树节点数最小. 这句话可能说起来比较绕,但是其实想想他的字面意思也就是找到最平衡的那个点. POJ 1655 题目大意: 直接给你一棵树,让你求树的 ...
- POJ 1655 Balancing Act && POJ 3107 Godfather
题目大意: 根据题目的图很好理解意思,就是记录每一个点的balance,例如 i 的balance就是把 i 从这棵树中除去后得到的森林中含有结点数最多 的子树中的节点个数,然后找到所有节点中对应的b ...
- poj 1655 Balancing Act(找树的重心)
Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...
- POJ 1655 Balancing Act【树的重心】
Balancing Act Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14251 Accepted: 6027 De ...
- POJ 1655.Balancing Act 树形dp 树的重心
Balancing Act Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14550 Accepted: 6173 De ...
- poj 1655 Balancing Act 求树的重心【树形dp】
poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...
- POJ 1655 Balancing Act 树的重心
Balancing Act Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...
随机推荐
- 微软最新的Web服务器Katana发布了版本3
Katana 项目入门 Howard Dierking 当 ASP.NET 首次在 2002 年发布时,时代有所不同. 那时,Internet 仍处于起步阶段,大约有 5.69 亿用户,每个用户平均每 ...
- mac系统 usr/ 目录下无法新建文件夹???
这个问题是在操作mongodb的时候遇到的,很苦恼.目前已经解决,将解决方法分享给各位遇到同样问题的你们. 1.重启电脑,开始关机就立马按住command+R,进入macOS恢复功能界面,进入的时间可 ...
- 2019PAT春季考试第4题 7-4 Structure of a Binary Tree (30 分)
题外话:考试的时候花了一个小时做了27分,由于Siblings这个单词不知道意思,所以剩下的3分就没去纠结了,后来发现单词是兄弟的意思,气哭~~ 这道题的麻烦之处在于如何从一个字符串中去找数字.先首先 ...
- webpack3整理(第一节/满三节)
一.css文件打包到js中(loader的三种写法) //第一种写法:直接用use. module: { rules: [{ test: /\.css$/, use: ['style-loader', ...
- Vue 路由知识三(过渡动画及路由钩子函数)
路由的过渡动画:让路由有过渡动画,需要在<router-view>标签的外部添加<transition>标签,标签还需要一个name属性. <transition nam ...
- 学习嵌入式开发板的Android平台体系结构和源码结构
本文转自迅为论坛资料:http://www.topeetboard.com 推荐学习嵌入式开发板平台:iTOP-4412开发板 下面这张图出自Google官方,展示了Android系统的主要组成部分. ...
- CAS机制总结
一.简介 CAS机制:(Compare and set)比较和替换 简单来说–>使用一个期望值来和当前变量的值进行比较,如果当前的变量值与我们期望的值相等,就用一个新的值来更新当前变量的值CAS ...
- php腾讯云短信验证码
腾讯云短信控制台:https://console.cloud.tencent.com/sms 腾讯云短信 PHP SDK:https://github.com/qcloudsms/qcloudsms_ ...
- 小写bool和大写BOOL的区别
转:https://blog.csdn.net/ji0525084/article/details/8594469 bool是标准C++中的布尔量,占一个字节大小内存,只有false或者true.具有 ...
- 03C#数据类型
C#数据类型 值类型和引用类型区别 在C#语言中,值类型变量存储的是指定数据类型的数据,值类型变量的值(或实例)存储在栈(Stack)中,赋值语句是传递变量的值.引用类型(例如类就是引用类型)的实例, ...