Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2
树形DP,注意考虑n-sum[u]这个搜索方向的联通点集
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 200099
#define L 31
#define INF 1000000009
#define eps 0.00000001
#define sf(a) scanf("%d",&a)
/*
dp[i] 记录i点除去偶的最大点集点数
sum[i] 记录所有子节点数目
*/
struct edge
{
int to, next;
}E[MAXN];
int sum[MAXN], dp[MAXN], head[MAXN];
int t, n, cnt;
void addedge(int f,int t)
{
E[cnt].to = t;
E[cnt].next = head[f];
head[f] = cnt++;
}
void init()
{
memset(sum, , sizeof(sum));
memset(dp, , sizeof(dp));
memset(head, -, sizeof(head));
cnt = ;
}
void dfs(int u, int pre)
{
sum[u] = dp[u] = ;
for (int i = head[u]; i != -; i = E[i].next)
{
int v = E[i].to;
if (v == pre) continue;
dfs(v, u);
sum[u] += sum[v];
dp[u] = max(dp[u], sum[v]);
}
dp[u] = max(dp[u], n - sum[u]);
}
int main()
{
sf(t);
while (t--)
{
init();
sf(n);
for (int i = ; i < n - ; i++)
{
int a, b;
sf(a), sf(b);
addedge(a, b);
addedge(b, a);
}
dfs(, -);
int ans = INF, k = -;
for (int i = ; i <= n; i++)
{
if (dp[i] < ans)
{
k = i, ans = dp[i];
}
}
printf("%d %d\n", k, ans);
}
}

I - Balancing Act POJ - 1655的更多相关文章

  1. Balancing Act POJ - 1655 (树的重心)

    Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the t ...

  2. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

  3. POJ 1655 Balancing Act&&POJ 3107 Godfather(树的重心)

    树的重心的定义是: 一个点的所有子树中节点数最大的子树节点数最小. 这句话可能说起来比较绕,但是其实想想他的字面意思也就是找到最平衡的那个点. POJ 1655 题目大意: 直接给你一棵树,让你求树的 ...

  4. POJ 1655 Balancing Act && POJ 3107 Godfather

    题目大意: 根据题目的图很好理解意思,就是记录每一个点的balance,例如 i 的balance就是把 i 从这棵树中除去后得到的森林中含有结点数最多 的子树中的节点个数,然后找到所有节点中对应的b ...

  5. poj 1655 Balancing Act(找树的重心)

    Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...

  6. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  7. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

  8. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  9. POJ 1655 Balancing Act 树的重心

    Balancing Act   Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...

随机推荐

  1. VMware Workstation安装CentOS 7和开发环境

    VMware Workstation新建虚拟机 此处使用的是VMware Workstation 10,其安装过程即是常规Windos系统下软件安装方式,略过. 安装完成双击图标: 打开虚拟机主界面: ...

  2. PHP自定义函数及内部函数考察点

    变量的作用域和静态变量 变量的作用域 变量的作用域也称变量的范围,变量的范围即它定义的上下文背景(也是它的生效范围).大部分的PHP变量只有一个单独的范围.这个单独的范围跨度同样包含了include和 ...

  3. iis 配置文件解决跨域问题

    <system.webServer> <httpProtocol> <customHeaders> <add name="Access-Contro ...

  4. ALTER OPERATOR CLASS - 修改一个操作符表的定义

    SYNOPSIS ALTER OPERATOR CLASS name USING index_method RENAME TO newname DESCRIPTION 描述 ALTER OPERATO ...

  5. 双引号" "和单引号' '区别

    双引号是字符串,单引号是字符 “\n”与'\n': 相同点: 都能起到换行作用     不同点: "\n" <=> {'\n', '\0'} '\n' <=> ...

  6. js中间件

    js中间件 当我们在编写业务代码时候,我们无法避免有些业务逻辑复杂而导致业务代码写得又长又乱,如果再加上时间紧凑情况下写出来的代码估计会更让人抓狂.以至于我们一直在寻求更好的架构设计和更好的代码设计, ...

  7. JS判断字符串包含的方法

    本文实例讲述了JS判断字符串包含的方法.分享给大家供大家参考.具体如下: 1. 例子: 1 2 3 4 5 6 7 8 var tempStr = "tempText" ; var ...

  8. IOS开发之关键字synchronized

    static Config * instance = nil; +(Config *) Instance { @synchronized(self)  { if(nil == instance)  { ...

  9. cssrefresh.js-CSS文件自动刷新

    一.如何使用cssrefresh.js 使用很简单,类似下面的代码: <head> <link rel="stylesheet" type="text/ ...

  10. 获取url上的参数

    var aa = '?name=hss&age=13';        function strToObj(str){            if(typeof str === 'undefi ...