[bzoj 1005][HNOI 2008]明明的烦恼(prufer数列+排列组合)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1005
分析:
首先prufer数列:http://baike.baidu.com/view/10474884.htm?fr=aladdin
从百度百科中我们可以弄出prufer数列的几个性质:
1、prufer数列与节点编号1~n的无根树一一对应
2、prufer数列的长度为n-2
3、prufer数列中每个数出现次数==这个数对应的节点在无根树中的度数-1(注意叶节点肯定不在prufer数列中的)
由性质1我们可以将问题转化成求prufer数列的个数,而对度数的要求也由性质3可以转换成堆prufer中数字出现个数的要求,这就转换成了基础的高中排列组合题了。换言之,让你从1~n中挑出n-2个数(可以重复也可以不挑)组成一个数列,一些数字的出现个数固定,一些数字的出现个数随意,问数列的种数。
按高中排列组合的思想,先考虑“捆绑”的,即出现个数固定的数字。设读入的度数分别为d1,d2,d3,……,dm,
则个数为C(n-2,d1-1)*C(n-2-(d1-1),d2-1)*…… 化简一下就可以得到:

然后考虑那些剩下的,则为:

然后结果就是两个相乘,计算的时候分解质因数就行
[bzoj 1005][HNOI 2008]明明的烦恼(prufer数列+排列组合)的更多相关文章
- BZOJ 1005 [HNOI2008]明明的烦恼 ★(Prufer数列)
题意 N个点,有些点有度数限制,问这些点可以构成几棵不同的树. 思路 [Prufer数列] Prufer数列是无根树的一种数列.在组合数学中,Prufer数列是由一个对于顶点标过号的树转化来的数列,点 ...
- [BZOJ1005](HNOI 2008)明明的烦恼
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 ...
- 【BZOJ 1005】[HNOI2008]明明的烦恼(暴力化简法)
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1005 [题意] 中文题 [题解] 一棵节点上标有序号的树会和一个prufer数列唯一对 ...
- [BZOJ1005]Prufer数列+排列组合
一棵树的Prufer数列 每次在剩下的树中找到标号最小的叶子节点(对于无根树而言即是度数为1的节点),删去. 同时将其父节点(即与其相连的唯一点)加入Prufer数列当中. 一个Prufer数列所对应 ...
- 【BZOJ 1005】[HNOI2008]明明的烦恼
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 ...
- 【BZOJ 1005】[HNOI2008]明明的烦恼(化简的另一种方法)
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1005 [题意] [题解] 题目和题解在上一篇; 这里 对 [(m^(n-2-tot)) ...
- bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2248 Solved: 898[Submit][Statu ...
- BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5786 Solved: 2263[Submit][Stat ...
- bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)
[HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5907 Solved: 2305[Submit][Status][Di ...
随机推荐
- ASP.NET 简介(转自Wiki)
ASP.NET是由微软在.NET Framework框架中所提供,开发Web应用程序的类库,封装在System.Web.dll文件中,显露出System.Web名字空间,并提供ASP.NET网页处理. ...
- [译]Cookies Without Chocolate Chips
Cookies Without Chocolate Chips In the HTTP sense, a cookie is a name with an associated value. A se ...
- 【转载】Hadoop分布式文件系统HDFS的工作原理详述
转载请注明来自36大数据(36dsj.com):36大数据 » Hadoop分布式文件系统HDFS的工作原理详述 转注:读了这篇文章以后,觉得内容比较易懂,所以分享过来支持一下. Hadoop分布式文 ...
- Jax
The scope of this project is to automate the current Credit Correction process of opening, editing, ...
- js执行顺序——学习笔记
我们知道有个全局的 window对象,js的一切皆window上的属性和方法.window上有个window.document属性,记录了整个html的dom树,document是顶层. body 和 ...
- Elasticsearch--搜索
目录 基本知识 查询结果返回设置:版本值.得分限制.定制返回字段 搜索类型 搜索执行偏好 基本查询 过滤器类型 高亮 控制高亮的片段 验证查询 数据排序 查询重写 基本知识 查询结果返回设置:版本值. ...
- swift 扩展 要素总结
类: 协议: 泛型及元素类型:扩展约束:
- Functions of the call stack
https://en.wikipedia.org/wiki/Call_stack#STACK-FRAME As noted above, the primary purpose of a call s ...
- 怎么忽略ESLint校验
方法一: 打开eslint的配置文件.eslintrc.js rules: { // allow async-await 'generator-star-spacing': 'off', // all ...
- 梦想CAD控件COM接口搜索图面上的文字
点击此处下载演示实例 主要用到函数说明: _DMxDrawX::NewSelectionSet 实例化一个构造选择集进行过滤,该类封装了选择集及其处理函数. _DMxDrawX::NewResbuf ...