Time Limit: 1000MS
Memory Limit: 32768KB
64bit IO Format: %I64d & %I64u

SubmitStatus

Description

When YY was a boy and LMY was a girl, they trained for NOI (National Olympiad in Informatics) in GD team. One day, GD team’s coach, Prof. GUO asked them to solve the following shortest-path problem.

There is a weighted directed multigraph G. And there are following two operations for the weighted directed multigraph:

(1) Mark a vertex in the graph.

(2) Find the shortest-path between two vertices only through marked vertices.

For it was the first time that LMY faced such a problem, she was very nervous. At this moment, YY decided to help LMY to analyze the shortest-path problem. With the help of YY, LMY solved the problem at once, admiring YY very much. Since then, when LMY meets
problems, she always calls YY to analyze the problems for her. Of course, YY is very glad to help LMY. Finally, it is known to us all, YY and LMY become programming lovers.

Could you also solve the shortest-path problem?

 

Input

The input consists of multiple test cases. For each test case, the first line contains three integers N, M and Q, where N is the number of vertices in the given graph, N≤300; M is the number of arcs, M≤100000;
and Q is the number of operations, Q ≤100000. All vertices are number as 0, 1, 2, … , N - 1, respectively. Initially all vertices are unmarked. Each of the next M lines describes an arc by three integers (x, y, c): initial vertex (x), terminal vertex (y),
and the weight of the arc (c). (c > 0) Then each of the next Q lines describes an operation, where operation “0 x” represents that vertex x is marked, and operation “1 x y” finds the length of shortest-path between x and y only through marked vertices. There
is a blank line between two consecutive test cases.

End of input is indicated by a line containing N = M = Q = 0.
 

Output

Start each test case with "Case #:" on a single line, where # is the case number starting from 1.

For operation “0 x”, if vertex x has been marked, output “ERROR! At point x”.

For operation “1 x y”, if vertex x or vertex y isn’t marked, output “ERROR! At path x to y”; if y isn’t reachable from x through marked vertices, output “No such path”; otherwise output the length of the shortest-path. The format is showed as sample output.

There is a blank line between two consecutive test cases.
 

Sample Input

5 10 10
1 2 6335
0 4 5725
3 3 6963
4 0 8146
1 2 9962
1 0 1943
2 1 2392
4 2 154
2 2 7422
1 3 9896
0 1
0 3
0 2
0 4
0 4
0 1
1 3 3
1 1 1
0 3
0 4
0 0 0
 

Sample Output

Case 1:
ERROR! At point 4
ERROR! At point 1
0
0
ERROR! At point 3
ERROR! At point 4
 

Source

2010 Asia Regional Tianjin Site ―― Online Contest



题意:有向图,有重边。选中一些点。在这些点里面求两点的最短路。有2个操作,操作 "0" 表示标记 x 选中,假设x之前已经被选中。输出 "ERROR! At point x"。操作 "1" 表示求 x ->y 的最短路。假设x或y不在选中的点里面。输出 "ERROR! At path x to y"。假设有不存在则输出 "No such path"。



思路:初始化 vis 数组为-1,表示所有未被选中。之后标记 vis[x] 为0表示 x 被选中。更新Floyd。把 x 点作为中间点更新最短路数组。

<span style="font-size:18px;">#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std; #define ll long long
const ll INF = 1<<30;
const double PI = acos(-1.0);
const double e = 2.718281828459;
const double eps = 1e-8;
int n, m, t;
const int MAXN = 310;
ll g[MAXN][MAXN];
int vis[MAXN]; void Floyd(int k)
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
if(g[i][j] > g[i][k]+g[k][j])
g[i][j] = g[i][k]+g[k][j];
}
}
} int main()
{
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
int num = 1;
while(cin>>n>>m>>t)
{
if(!n && !m && !t)
break;
memset(vis, -1, sizeof(vis));
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
g[i][j] = (i==j)?0:INF;
}
}
//cout<<g[4][5]<<endl;
int p, q, x, y;
ll w;
for(int i = 1; i <= m; i++)
{
scanf("%d %d %I64d", &p, &q, &w);
if(g[p][q] > w)
g[p][q] = w;
}
if(num != 1)
printf("\n");
printf("Case %d:\n", num++);
while(t--)
{
scanf("%d", &q);
if(q == 0)
{
scanf("%d", &x);
if(vis[x] == 0)
printf("ERROR! At point %d\n", x);
else
{
vis[x] = 0;
Floyd(x);
}
}
else
{
scanf("%d %d", &x, &y);
if(vis[x]==-1 || vis[y]==-1)
printf("ERROR! At path %d to %d\n", x, y);
else
{
if(g[x][y] != INF)
printf("%I64d\n", g[x][y]);
else
printf("No such path\n");
}
}
}
}
return 0;
} </span>

HDU - 3631 Shortest Path(Floyd最短路)的更多相关文章

  1. hdu 3631 Shortest Path(Floyd)

    题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...

  2. hdu 3631 Shortest Path

    floyd算法好像很奇妙的样子.可以做到每次加入一个点再以这个点为中间点去更新最短路,效率是n*n. #include<cstdio> #include<cstring> #i ...

  3. HDU 5636 Shortest Path 暴力

    Shortest Path 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5636 Description There is a path graph ...

  4. ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]

    人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了…… 题目链接:http://acm.zju.edu.cn/onli ...

  5. HDU 5636 Shortest Path

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5636 题解: 1.暴力枚举: #include<cmath> #include<c ...

  6. HDU 5636 Shortest Path(Floyed,枚举)

    Shortest Path Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Tot ...

  7. HDU - 4725_The Shortest Path in Nya Graph

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...

  8. HDU 5636 Shortest Path(Floyd)

    题目链接  HDU5636 n个点,其中编号相邻的两个点之间都有一条长度为1的边,然后除此之外还有3条长度为1的边. m个询问,每次询问求两个点之前的最短路. 我们把这三条边的6个点两两算最短路, 然 ...

  9. HDU 4479 Shortest path 带限制最短路

    题意:给定一个图,求从1到N的递增边权的最短路. 解法:类似于bellman-ford思想,将所有的边先按照权值排一个序,然后依次将边加入进去更新,每条边只更新一次,为了保证得到的路径是边权递增的,每 ...

随机推荐

  1. form表单清空、重置

    form_live为formID <input type="button" value="重置" onclick="$('#form_live' ...

  2. Qt杂记——布局、信号与槽等

    1.QHBoxLayout布局设置拉伸: ui->TopLayout->setStretch(,); //left ui->TopLayout->setStretch(,); ...

  3. if语句,while语句,do whlie语句,循环语句

    总结: 1.定义数组并赋值: var arr=[1,2,3,4]; 2.通过下标访问数组: var str=arr[0]; 3.自定义数组 var arr=new Array(); 4.数组的赋值 a ...

  4. 使用SELECT语句检索数据

    使用SELECT语句检索数据select指令适用于SQL数据库SELECT 语句用于从数据库中选取数据.(指令不分大小写,选择的值除名字和一些有特殊意义的字符可不分大小写,from结束时一定要加;) ...

  5. Tomcat 使用redis实现session共享

    准备工作: 1.安装nginx 环境搭建参考:https://blog.csdn.net/fd2025/article/details/79878326 nginx.conf的编辑: 2.同一台机器配 ...

  6. .Net Core2.2 + EF Core + DI,三层框架项目搭建教程

    笔记: 近两年.Net Core发展的很快,目前最新版为3.0预览版,之前在网上买了一本1.1版书籍都还没来得及看呢,估计现在拿出来看也毫无意义了.已多年.net工作经验,看书不如直接实际上手来得快, ...

  7. 【Linux软件安装】

    安装约定 软件安装在/opt目录下,opt目录规范: modules:软件安装的目录 softwares:软件包目录 tools:工具目录 datas:数据目录 如果出现 No XXX package ...

  8. 每日命令:(3)pwd

    Linux中用 pwd 命令来查看”当前工作目录“的完整路径. 简单得说,每当你在终端进行操作时,你都会有一个当前工作目录. 在不太确定当前位置时,就会使用pwd来判定当前目录在文件系统内的确切位置. ...

  9. js之条件判断

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. 05 Python运算符

    Python运算符: 此图来源于菜鸟教程,更详细参考 http://www.runoob.com/python3/python3-basic-operators.html 说明: 同一优先级的通常从左 ...