POJ 3090 坐标系上的视线遮蔽问题
Description
A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.
Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, y ≤ N.
Input
The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.
Output
For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.
Sample Input
4
2
4
5
231
Sample Output
1 2 5
2 4 13
3 5 21
4 231 32549 这题目求的是视线所及未挡住的点
因为如(4,2)这样的点,gcd(4,2)=2!=1,有(2,1)将其挡住了。所以这题变向再求下x,y互质的点
可以从斜对角线对半分开,算一半最后乘2即可 代码如下:
#include <iostream>
#include <stdio.h>
#include <cstring>
using namespace std;
#define LL long long
#define N 1010
int phi[];
int F[]; void get_phi()
{
memset(phi,,sizeof(phi));
phi[]=;
for(int i=;i<=N;i++)
{
if(!phi[i])
for(int j=i;j<=N;j+=i)
{
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]*(i-)/i;
}
}
} int main()
{
F[]=;
get_phi();
for(int i=;i<=N;i++) F[i]=F[i-]+phi[i];
int n,T;
cin>>T;
for(int i=;i<=T;i++){
cin>>n;
cout<<i<<' '<<n<<' '<<F[n]*+<<endl;
}
return ;
}
POJ 3090 坐标系上的视线遮蔽问题的更多相关文章
- POJ 3801 有上下界最小流
1: /** 2: POJ 3801 有上下界的最小流 3: 4: 1.对supersrc到supersink 求一次最大流,记为f1.(在有源汇的情况下,先使整个网络趋向必须边尽量满足的情况) 5: ...
- POJ 3090 Visible Lattice Points 欧拉函数
链接:http://poj.org/problem?id=3090 题意:在坐标系中,从横纵坐标 0 ≤ x, y ≤ N中的点中选择点,而且这些点与(0,0)的连点不经过其它的点. 思路:显而易见, ...
- POJ 3090 Visible Lattice Points (ZOJ 2777)
http://poj.org/problem?id=3090 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1777 题目大意: ...
- POJ 3090 Visible Lattice Points | 其实是欧拉函数
题目: 给一个n,n的网格,点可以遮挡视线,问从0,0看能看到多少点 题解: 根据对称性,我们可以把网格按y=x为对称轴划分成两半,求一半的就可以了,可以想到的是应该每种斜率只能看到一个点 因为斜率表 ...
- poj 3090 && poj 2478(法雷级数,欧拉函数)
http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]. 该题是法雷级数的变形吧,答案是2 ...
- 【POJ 3090】 Visible Lattice Points
[题目链接] http://poj.org/problem?id=3090 [算法] 通过观察发现,在这个平面直角坐标系中,除了(1,1),(1,0)和(0,1),所有可见点的横纵坐标互质 那么,问题 ...
- poj 3090 Visible Lattice Points(离线打表)
这是好久之前做过的题,算是在考察欧拉函数的定义吧. 先把欧拉函数讲好:其实欧拉函数还是有很多解读的.emmm,最基础同时最重要的算是,¢(n)表示范围(1, n-1)中与n互质的数的个数 好了,我把规 ...
- [poj 3090]Visible Lattice Point[欧拉函数]
找出N*N范围内可见格点的个数. 只考虑下半三角形区域,可以从可见格点的生成过程发现如下规律: 若横纵坐标c,r均从0开始标号,则 (c,r)为可见格点 <=>r与c互质 证明: 若r与c ...
- [poj] 3090 Visible Lattice Points
原题 欧拉函数 我们发现,对于每一个斜率来说,这条直线上的点,只有gcd(x,y)=1时可行,所以求欧拉函数的前缀和.2*f[n]+1即为答案. #include<cstdio> #def ...
随机推荐
- Vijos p1688 病毒传递 树形DP
https://vijos.org/p/1688 看了下别人讨论的题解才想到的,不过方法和他的不同,感觉它的是错的.(感觉.感觉) 首先N只有1000, 如果能做到暴力枚举每一个节点,然后O(N)算出 ...
- 【前端】Html5浏览器缓存 sessionStorage 与 localStorage
一.sessionStorage: 浏览关闭会话结束就被清除:(不能跨页面) localStorage:永久保存: 二.使用 var storage = window.sessionStorage; ...
- Elasticsearch (2) - 映射
常用映射类型 核心的字段类型如下: String 字符串包括text和keyword两种类型: 1.text analyzer 通过analyzer属性指定分词器. 下边指定name的字段类型为tex ...
- P3372 【模板】线段树 1 区间查询与区间修改
题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个 ...
- Backbone.js之Todo源码浅析
相信每个接触了解过backbone的人都知道todo,网上的关于它的分析教程也都分析乱了.但是,知识只有自己学习领悟才是自己的,话不多说,正文开始. 在分析todo的源码之前,首先我们要知道todo具 ...
- QTableWidget表头样式
转载请注明出处:http://www.cnblogs.com/dachen408/p/7742680.html QTableView { background-color: rgba(255, 255 ...
- uva10163 Storage Keepers
习题9-9 注意前提是最小值最大.很少做两次dp的题. 初始化要细心. #include<iostream> #include<cmath> #include<algor ...
- CSS继承inherit | elementUI NavMenu vertical竖版 加 A标记 外联 不能继承上层color,需要手写下color:inherit;
<li data-v-576b9cf5="" role="menuitem" tabindex="0" class="el- ...
- HTML5新特性之History
几年前,Ajax的兴起给互联网带来了新的生机,同时也使用户体验有了质的飞跃,用户无需刷新页面即可获取新的数据,而页面也以一种更具有交互性的形式为用户展现视图,可以说这种变化对互联网发展的贡献是史无前例 ...
- QT+信号有参数与无参数的实现+QT4和QT5在信号和槽使用上的区别
在QT5中,信号有参数和无参数 #ifndef SUBWIDGET_H #define SUBWIDGET_H #include <QWidget> #include <QPushB ...