BZOJ 4033 [HAOI2015]树上染色 ——树形DP
可以去UOJ看出题人的题解。
这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$
#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (ll i=j;i<=k;++i)
#define D(i,j,k) for (ll i=j;i>=k;--i)
#define ll long long
ll h[5005],to[5005],ne[5005],en=0,w[5005]; void add(ll a,ll b,ll c)
{to[en]=b;ne[en]=h[a];w[en]=c;h[a]=en++;} ll n,k,tmp[2005],m;
ll dp[2005][2005];
ll siz[2005]; void Tree_DP(ll o,ll fa)
{
dp[o][0]=dp[o][1]=0;
siz[o]=1;
for (ll i=h[o];i>=0;i=ne[i])
if (to[i]!=fa)
{
Tree_DP(to[i],o);
memset(tmp,-0x3f3f3f3f,(siz[o]+siz[to[i]]+2)*sizeof (ll));
for (ll j=0;j<=siz[o];++j)
for (ll k=0;k<=siz[to[i]];++k)
tmp[j+k]=max((ll)tmp[j+k],(ll)dp[o][j]+dp[to[i]][k]+(ll)w[i]*(k*(m-k)+(siz[to[i]]-k)*(n-m-(siz[to[i]]-k))));
siz[o]+=siz[to[i]];
for (ll j=0;j<=siz[o];++j) dp[o][j]=max((ll)tmp[j],dp[o][j]);
}
} int main()
{
memset(h,-1,sizeof h);
scanf("%lld%lld",&n,&m);
F(i,2,n)
{
ll a,b,c;
scanf("%lld%lld%lld",&a,&b,&c);
add(a,b,c); add(b,a,c);
}
memset(dp,-0x3f3f3f3f,sizeof (dp));
Tree_DP(1,0);
printf("%lld\n",dp[1][m]);
}
BZOJ 4033 [HAOI2015]树上染色 ——树形DP的更多相关文章
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- BZOJ 4033: [HAOI2015]树上染色题解
BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- BZOJ 4033[HAOI2015] 树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3188 Solved: 1366[Submit][Stat ...
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- bzoj 4033: [HAOI2015]树上染色【树形dp】
准确的说应该叫树上分组背包?并不知道我写的这个叫啥 设计状态f[u][j]为在以点u为根的子树中有j个黑点,转移的时候另开一个数组,不能在原数组更新(因为会用到没更新时候的状态),方程式为g[j+k] ...
随机推荐
- Android:Service通知Activity更新界面
Android有四大组件,其中包括service和activity,那么在使用的过程中,我们最常遇到的问题是他们之间的通信问题. 1.首先Activity调用Service 这个是比较基础的,它有两种 ...
- android 从contentView中删除view
1. ((ViewGroup)view.getParent()).removeView(view) 2. ViewGroup rootView = (ViewGroup) this.findViewB ...
- java.lang.IllegalAccessException: Class XX can not access a member of class XXX with modifiers "private static"
当前需求: 利用反射获取某一属性值运行结果:java.lang.IllegalAccessException: Class com.example.demo.test.Reflect can not ...
- vue分环境打包配置方法一
直接上代码配置: 首先是config下面的文件修改 dev.env.js 'use strict' const merge = require('webpack-merge') const prod ...
- Netbeans使用笔记
Netbeans 新建项目 A brand new project 选择"文件">"新建项目"以打开新建项目向导. 在向导中,选择 "C/C++ ...
- 判断NumLock键和CapsLock键是否被锁定
实现效果: 知识运用: AIP函数GetKeyState //针对已处理过的按键 在最近一次输入信息时 判断指定虚拟键的状态 intkey:预测试的虚拟键键码 实现代码: [DllImport(&qu ...
- 利用python实现整数转换为任意进制字符串
假设你想将一个整数转换为一个二进制和十六进制字符串.例如,将整数 10 转换为十进制字符串表示为 10 ,或将其字符串表示为二进制 1010 . 实现 以 2 到 16 之间的任何基数为参数: def ...
- 【转】将Eclipse中的CTRL+K搬到IDEA中
https://my.oschina.net/sprieo/blog/224838 IDEA的该功能是CTRL+F3,行为是获取当前光标位置的单词然后调用搜索.只需要按CTRL+F3一次,就可以实现C ...
- CPP-基础:strcpy之于C++(
以下对strcpy函数错误的是? char atr1[]="string"; ]; char *str3; char *str4="sting"; A.strc ...
- C#导入有道词典单词本到扇贝
由于扇贝查词没有有道方便,所以很多时候添加生词都是在使用有道词典,然后顺手就保存到了有道单词本,不过在扇贝记单词可以打卡,记单词更方便,进入扇贝页面后发现扇贝单词批量导入居然一次只支持10个,查了扇贝 ...