[USACO09JAN]全流Total Flow
题目描述
Farmer John always wants his cows to have enough water and thus has made a map of the N (1 <= N <= 700) water pipes on the farm that connect the well to the barn. He was surprised to find a wild mess of different size pipes connected in an apparently haphazard way. He wants to calculate the flow through the pipes.
Two pipes connected in a row allow water flow that is the minimum of the values of the two pipe's flow values. The example of a pipe with flow capacity 5 connecting to a pipe of flow capacity 3 can be reduced logically to a single pipe of flow capacity 3:
+---5---+---3---+ -> +---3---+
Similarly, pipes in parallel let through water that is the sum of their flow capacities:
+---5---+
---+ +--- -> +---8---+
+---3---+
Finally, a pipe that connects to nothing else can be removed; it contributes no flow to the final overall capacity:
+---5---+
---+ -> +---3---+
+---3---+--
All the pipes in the many mazes of plumbing can be reduced using these ideas into a single total flow capacity.
Given a map of the pipes, determine the flow capacity between the well (A) and the barn (Z).
Consider this example where node names are labeled with letters:
+-----------6-----------+
A+---3---+B +Z
+---3---+---5---+---4---+
C D
Pipe BC and CD can be combined:
+-----------6-----------+
A+---3---+B +Z
+-----3-----+-----4-----+
D Then BD and DZ can be combined:
+-----------6-----------+
A+---3---+B +Z
+-----------3-----------+
Then two legs of BZ can be combined:
B A+---3---+---9---+Z
Then AB and BZ can be combined to yield a net capacity of 3:
A+---3---+Z
Write a program to read in a set of pipes described as two endpoints and then calculate the net flow capacity from 'A' to 'Z'. All
networks in the test data can be reduced using the rules here.
Pipe i connects two different nodes a_i and b_i (a_i in range
'A-Za-z'; b_i in range 'A-Za-z') and has flow F_i (1 <= F_i <= 1,000). Note that lower- and upper-case node names are intended to be treated as different.
The system will provide extra test case feedback for your first 50 submissions.
约翰总希望他的奶牛有足够的水喝,因此他找来了农场的水管地图,想算算牛棚得到的水的 总流量.农场里一共有N根水管.约翰发现水管网络混乱不堪,他试图对其进行简 化.他简化的方式是这样的:
两根水管串联,则可以用较小流量的那根水管代替总流量.
两根水管并联,则可以用流量为两根水管流量和的一根水管代替它们
当然,如果存在一根水管一端什么也没有连接,可以将它移除.
请写个程序算出从水井A到牛棚Z的总流量.数据保证所有输入的水管网络都可以用上述方法 简化.
输入输出格式
输入格式:
Line 1: A single integer: N
- Lines 2..N + 1: Line i+1 describes pipe i with two letters and an integer, all space-separated: a_i, b_i, and F_i
输出格式:
- Line 1: A single integer that the maximum flow from the well ('A') to the barn ('Z')
输入输出样例
5
A B 3
B C 3
C D 5
D Z 4
B Z 6
3
#include<cstdio>
#include<cstring>
#define inf 100000000
int n,s,t,tw;
int a,b,c;
char ch[],cn[];
int h[],hs=;
struct edge{int s,n,w;}e[];
int d[],q[],head,tail;
inline int min(int x,int y){return x<y?x:y;}
void bfs(){
memset(d,,sizeof(d));
head=tail=;
d[s]=,q[head++]=s;
while(head>tail){
a=q[tail++];
for(int i=h[a];i;i=e[i].n)
if(!d[e[i].s]&&e[i].w){
d[e[i].s]=d[a]+;
if(e[i].s==t) return;
q[head++]=e[i].s;
}
}
}
int ap(int k,int w){
if(k==t) return w;
int uw=w;
for(int i=h[k];i&&uw;i=e[i].n)
if(e[i].w&&d[e[i].s]==d[k]+){
int wt=ap(e[i].s,min(uw,e[i].w));
if(wt) e[i].w-=wt,e[i^].w+=wt,uw-=wt;
else d[e[i].s]=;
}
return w-uw;
}
bool Dinic(){
bfs();
if(!d[t]) return ;
tw+=ap(s,inf);
return ;
}
int main(){
scanf("%d",&n);
s='A',t='Z';
while(n--){
scanf("%s%s%d",ch,cn,&c);
a=ch[],b=cn[];
e[++hs]=(edge){b,h[a],c},h[a]=hs;
e[++hs]=(edge){a,h[b],c},h[b]=hs;
}
while(Dinic());
printf("%d\n",tw);
return ;
}
我终于能顺手的,顺手A了,网络流真心好实现。
题目来源:洛谷
[USACO09JAN]全流Total Flow的更多相关文章
- 2018.07.06 洛谷P2936 [USACO09JAN]全流Total Flow(最大流)
P2936 [USACO09JAN]全流Total Flow 题目描述 Farmer John always wants his cows to have enough water and thus ...
- AC日记——[USACO09JAN]全流Total Flow 洛谷 P2936
题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...
- 洛谷——P2936 [USACO09JAN]全流Total Flow
题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...
- 洛谷 P2936 [USACO09JAN]全流Total Flow
题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...
- 【luogu P2936 [USACO09JAN]全流Total Flow】 题解
题目链接:https://www.luogu.org/problemnew/show/P2936 菜 #include <queue> #include <cstdio> #i ...
- P2936(BZOJ3396) [USACO09JAN]全流Total Flow[最大流]
题 裸题不多说,在网络流的练习题里,你甚至可以使用暴力. #include<bits/stdc++.h> using namespace std; typedef long long ll ...
- [USACO09JAN]Total Flow【网络流】
Farmer John always wants his cows to have enough water and thus has made a map of the N (1 <= N & ...
- BZOJ3396: [Usaco2009 Jan]Total flow 水流
3396: [Usaco2009 Jan]Total flow 水流 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 45 Solved: 27[Sub ...
- Openvswitch原理与代码分析(5): 内核中的流表flow table操作
当一个数据包到达网卡的时候,首先要经过内核Openvswitch.ko,流表Flow Table在内核中有一份,通过key查找内核中的flow table,即可以得到action,然后执行acti ...
随机推荐
- React实战之Ant Design—Upload上传_附件上传
React实战之Ant Design—Upload上传_附件上传 Upload组件大家都在官方文档中看过了,但写的时候还是会遇到许多问题,一些新手看了文档后感觉无从下手,本文过多的简绍就不说了,直接看 ...
- 基于.Net Core的API框架的搭建(2)
4.加入数据库支持 下面我们为项目加入数据库支持,修改appsettings.json: 然后我们要生成实体类,打开VS工具->NuGet包管理器->程序包管理器控制台: 输入命令: Sc ...
- spring 简单实现BeanFactory(转)
原文地址: http://blog.csdn.net/mlc1218559742/article/details/52776160 有没有发现上面的代码与利用反射实现工厂模式的代码很相似.对,你没有看 ...
- Q - Euclid in Manhattan(欧几里德距离==曼哈顿距离?)
Desciption Consider a set of n points in a 2-D plane with integer coordinates. There are various way ...
- C# 生成 bmp 格式的图片
using System; using System.Collections.Generic; using System.Diagnostics; using System.Drawing; usin ...
- struct结构的一些内容
srtuct结构的定义: 访问修饰符 struct 结构名{ //方法体 } 结构定义的特点: 1.结构中可以有字段(属性),也可以有方法 2.定义时,结构的字段不能被赋初值 3.结构和类一样都有默 ...
- Spring.Net学习笔记(2)-依赖注入
一.开发环境 操作系统:Win10 编译器:VS2013 framework版本:.net 4.5 Spring版本:1.3.1 二.涉及程序集 Spring.Core.dll Common.Logg ...
- mysql中数据库的设计
软件开发流程(CMMI): 1):项目启动; 2):项目计划: 3):需求分析; 需要得到的结果是什么? 4):系统设计; 该怎么做? 5):系统开发; 6):系统测试; 7):系 ...
- html与html5 总结
时间:于2017年12月3日 19:35:18开始 用于: 这文章用于个人技术总结(全文转发请标明出处,小段摘抄随意) HTML笔记1.html标签不区分大小写,但是建议小写2.常用标签: 可用在he ...
- STL容器的排序
STL容器的排序,支持随机访问的容器vector,deque,string没有sort成员,可调用std::sort排序:list排序调用自带的list::sort. 下面是std::sort函数,有 ...