传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6158

本题是一个计算几何题——四圆相切。

平面上的一对内切圆,半径分别为R和r。现在这一对内切圆之间,按照如图所示的方式依次放置N个相切的圆。求放置的这N个圆的面积之和。

在此,首先介绍一个定理:笛卡尔定理。Wiki: Descartes' theorem

平面上的四个圆,第i个圆的半径为r[i],曲率为κ[i](注:κ=r­-1)。若这四个圆中的每一对均构成外切,则其曲率满足约束:

$\left(\sum_{i=1}^4 \kappa _i\right)^2 = 2\cdot \sum_{i=1}^4 \kappa _i^2$

通过这个定理,可以得到以下情景相应的约束:

平面上的三个圆,第i个圆的半径为r[i],曲率为κ[i]。若这三个圆中的每一对均构成外切,且同时内切于一个半径为R,曲率为K的大圆,则其曲率同样满足以上的关系(注:此处大圆的曲率应取负值,即K=-R-1)。半径的约束式相应地写成:

$\left(\sum_{i=1}^3 \kappa _i -\frac{1}{R} \right)^2 = 2\left( \sum_{i=1}^3 \kappa _i^2+\frac{1}{R^2}\right)$

接下来,首先考虑上半侧的情况(下半侧与之对称)。设上半侧放置的第k个圆的曲率为c[k](约定放置于中间的圆的曲率为c[0]),则其与半径为r的圆、放置的第k-1个圆相外切,并同时内切于半径为R的圆。根据四圆相切的关系写出约束式:

$\left(\frac{1}{r}-\frac{1}{R} +c_k+c_{k-1}\right)^2 = 2\left(\frac{1}{r^2}+\frac{1}{R^2} +c_k^2+c_{k-1}^2\right)$

相应地考虑第k+1个圆,则有:

$\left(\frac{1}{r}-\frac{1}{R} +c_k+c_{k+1}\right)^2 = 2\left(\frac{1}{r^2}+\frac{1}{R^2} +c_k^2+c_{k+1}^2\right)$

两式相减,则有:

$(c_{k+1}-c_{k-1})\left( 2\frac{R-r}{Rr}+2c_k+c_{k+1}+c_{k-1}\right )=2(c_{k+1}+c_{k-1})(c_{k+1}-c_{k-1})\\\Rightarrow 2\frac{R-r}{Rr}+2c_k=c_{k+1}+c_{k-1}\Rightarrow (c_{k+1}-c_k)-(c_k-c_{k-1})=2\frac{R-r}{Rr}$

设d[k]=c[k]-c[k-1],则d[]是一个等差数列。为求得这个等差数列,首先需要求解首项。

c[0]是显然的,而c[1]则可以借助与R、r、c[0]的关系求解。

$c_0=\frac{1}{R-r}\\c_1=\frac{R^2+r^2-Rr}{Rr(R-r)}$

于是,d[]的通项公式:$d_k=(2k-1)\frac{R-r}{Rr},k=1,2,3,\cdots$

于是,c[]的通项公式:$c_k=\frac{1}{R-r}+\frac{R-r}{Rr}k^2,k=0,1,2,3,\cdots$

求解时注意精度控制。参考程序如下:

#include <bits/stdc++.h>
using namespace std; const double pi = acos(-);
const double eps = 1e-; int R, r;
double a, b; double get_curv(int k)
{
return a + b * k * k;
} int main(void)
{
int t;
scanf("%d", &t);
while (t--) {
int n;
scanf("%d%d%d", &R, &r, &n);
if (R == r) {
printf("%.5f\n", );
continue;
}
if (R < r) swap(R, r);
a = 1.0 / (R - r);
b = 1.0 * (R - r) / (R * r);
//Add first circle.
int rad = 1.0 / get_curv();
double ans = rad * rad;
//Add following circles.
for (int i = ; i <= n; i += ) {
double rad = 1.0 / get_curv(i / );
double ds = rad * rad;
if (ds < eps) break;
ans += ds * (i < n ? : );
}
printf("%.5f\n", ans * pi);
}
return ;
}

本题还有一种更为简单的解法,即通过笛卡尔定理与韦达定理进行迭代。参考程序如下:

#include <bits/stdc++.h>
using namespace std; const double pi = acos(-);
const double eps = 1e-; int R, r; int main(void)
{
int t;
scanf("%d", &t);
while (t--) {
int n;
scanf("%d%d%d", &R, &r, &n);
if (R == r) {
printf("%.5f\n", );
continue;
}
if (R < r) swap(R, r);
//Add first circle.
double ans = (R - r) * (R - r);
double k_1 = -1.0 / R;
double k_2 = 1.0 / r;
double k_3 = 1.0 / (R - r);
double k_4 = k_1 + k_2 + k_3;
//Add following circles.
for (int i = ; i <= n; i += ) {
double ds = 1.0 / (k_4 * k_4);
if (ds < eps) break;
ans += ds * (i < n ? : );
double k_5 = 2.0 * (k_1 + k_2 + k_4) - k_3;
k_3 = k_4;
k_4 = k_5;
}
printf("%.5f\n", ans * pi);
}
return ;
}

HDU - 6158 The Designer的更多相关文章

  1. hdu 6158 The Designer( 反演圆)

    The Designer Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  2. HDU 6158 笛卡尔定理+韦达定理

    The Designer Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. HDU 6158 笛卡尔定理 几何

    LINK 题意:一个大圆中内切两个圆,三个圆两两相切,再不断往上加新的相切圆,问加上的圆的面积和.具体切法看图 思路:笛卡尔定理: 若平面上四个半径为r1.r2.r3.r4的圆两两相切于不同点,则其半 ...

  4. 「HDU6158」 The Designer(圆的反演)

    题目链接多校8-1009 HDU - 6158 The Designer 题意 T(<=1200)组,如图在半径R1.R2相内切的圆的差集位置依次绘制1,2,3,到n号圆,求面积之和(n< ...

  5. hdu6158 The Designer

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6158 题目: The Designer Time Limit: 8000/4000 MS (J ...

  6. hdu 1010 深搜+剪枝

    深度搜索 剪枝 还不是很理解 贴上众神代码 //http://blog.csdn.net/vsooda/article/details/7884772#include<iostream> ...

  7. hdu 1284完全背包

    http://acm.hdu.edu.cn/showproblem.php?pid=1284 New~ 欢迎“热爱编程”的高考少年——报考杭州电子科技大学计算机学院关于2015年杭电ACM暑期集训队的 ...

  8. hdu 1548 楼梯 bfs或最短路 dijkstra

    http://acm.hdu.edu.cn/showproblem.php?pid=1548 Online Judge Online Exercise Online Teaching Online C ...

  9. hdu多校1002 Balanced Sequence

    Balanced Sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s) ...

随机推荐

  1. Akka源码分析-Cluster-ClusterClient

    ClusterClient可以与某个集群通信,而本身节点不必是集群的一部分.它只需要知道一个或多个节点的位置作为联系节点.它会跟ClusterReceptionist 建立连接,来跟集群中的特定节点发 ...

  2. RabbitMq安装成功后执行命令报错(Error: unable to connect to node 'rabbit@DESKTOP-LPKSION': nodedown)

    我们直接来看解决方案吧.首先打开服务,找到RabbitMq服务. 双击打开后选择登陆选项卡: 点选此账户,输入你计算机的登录名称.点击浏览: 在这里输入你的用户名,点检索: 这里的密码输入你电脑开机登 ...

  3. Springboot拦截器线上代码失效

    今天想测试下线上代码,能否正常的执行未登录的拦截.所以把拦截器的代码给开放出来,但是没想到线上代码addInerceptors(InterceptorRegistry registry) 这个方法一直 ...

  4. 例题 5-1 STL

    Raju and Meena love to play with Marbles. They have got a lot of marbles with numbers written on the ...

  5. ACM_四数之和

    四数之和 Time Limit: 2000/1000ms (Java/Others) Problem Description: 有n个不同的整数,判断能否从中选4次,4个数和刚好为m.数字可重复选取. ...

  6. C#---数据库访问通用类、Access数据库操作类、mysql类 .

    //C# 数据库访问通用类 (ADO.NET)using System;using System.Collections.Generic;using System.Text;using System. ...

  7. SQL Split函数,将一串字符串返回成table

    写法一: CREATE FUNCTION [dbo].[Split] ( @str VARCHAR(MAX), --传进来的字符串 ) --分割符 ) RETURNS @t TABLE --定义一个虚 ...

  8. jquery中有关cookie的使用简要说明

    jquery.cookie.js 的配置 首先包含jQuery的库文件,在后面包含 jquery.cookie.js 的库文件. <script type="text/javascri ...

  9. CF869C The Intriguing Obsession

    思路: 分别在两种不同颜色的岛屿群之间进行搭桥.因为相同颜色的岛屿之间不能有边,任意两个相同颜色的岛屿不能同时和另外一个不同颜色的岛屿都有边.实现: #include <bits/stdc++. ...

  10. 如何解决数据库中,数字+null=null

    如何解决数据库中,数字+null=null 我使用SQLServer,做一个 update 操作,累计一个数.在数据库中,为了方便,数据库中这个字段我设为允许为空,并且设置了默认值为 0 .但是在新增 ...