自湖南长沙培训以来的坑。。。一直未填,今天把这个问题解决掉。

参考:

1.http://www.cnblogs.com/Var123/p/5523068.html

2.http://blog.csdn.net/qzh_1430586275/article/details/51893154

3.http://blog.csdn.net/check_check_check/article/details/52101467

一、lucas定理的定义

(当且仅当p为质数)

很简短,下面看看应用和相关题目。

二、lucas定理的应用

1、[bzoj4591][Shoi2015][超能粒子炮·改]

题目描述:求 C(n,0)+C(n,1)+...+C(n,k)mod2333

推到过程:

易得,

原式=C(n/2333,0)∗C(nmod2333,0)+C(n/2333,0)∗C(nmod2333,1)+...+C(n/2333,k/2333)∗C(nmod2333,kmod2333)   mod 2333

也就是将原式中的各个mod 2333项拆分成两项再总体mod 2333

同类项合并,分两种部分考虑:
设k=k1*2333+k2 (0≤k1,k2)
1)对于k1部分
先考虑k1=0的情况,可以得出这些乘积的各个首项是C(n/2333,0),将其提出得到C(n/2333,0)*∑C(n%2333,i)(其中i∈[0,2333])
考虑k1=1的情况,可得C(n/2333,1)*∑C(n%2333,i)(其中i∈[0,2333])
考虑k1=2的情况,可得C(n/2333,2)*∑C(n%2333,i)(其中i∈[0,2333])
···  ···  ···  ···  ···  ···
提公因式→→→∑C(n/2333,j)*∑C(n%2333,i)(其中i∈[0,2333],j∈[0,k1))
重复3遍
∑C(n/2333,j)*∑C(n%2333,i)(其中i∈[0,2333],j∈[0,k1))
∑C(n/2333,j)*∑C(n%2333,i)(其中i∈[0,2333],j∈[0,k1))
∑C(n/2333,j)*∑C(n%2333,i)(其中i∈[0,2333],j∈[0,k1))
吼,各位就等了,看看k2部分吧
2)对于k2部分
原式=C(n/2333,k1)*C(n%2333,0)+C(n/2333,k1)*C(n%2333,1)+······+C(n/2333,k1)*C(n%2333,k%2333)
=C(n/2333,k1)*(∑C(n%2333,i))(其中i∈[0,k%2333])
综上,ans=∑C(n/2333,j)*∑C(n%2333,i)(其中i∈[0,2333],j∈[0,k1))+C(n/2333,k1)*(∑C(n%2333,i))(其中i∈[0,k%2333])
 
说了这么多,那么这个定理的用法是什么?
显然是递归求解组合数的模数咯~
 

所以对于这道题,我们先预处理出一个S(n,k)=∑C(n,i) (i∈[0,k]) (当然最后都是mod p意义下的),ans=S(n%2333,2332)*(∑C(n/2333,j)) (j∈[0,k1)) + C(n/2333,k1)*S(n%2333,k%2333)

ans中的S()一定可以用二维的东西在规定时空内求出,而∑C(n/2333,j)就是我们超能粒子炮`改的子问题,递归求解即可,另,C(n/2333,k1)也可以用lucas定理递归来解

于是这道题就口头ac了。

lucas定理和组合数学的更多相关文章

  1. lucas定理,组合数学问题

    对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...

  2. Bzoj 4403: 序列统计 Lucas定理,组合数学,数论

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] ...

  3. HDU 5226 Tom and matrix(组合数学+Lucas定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5226 题意:给一个矩阵a,a[i][j] = C(i,j)(i>=j) or 0(i < ...

  4. Lucas定理及应用

    额,前两天刚讲了数据结构,今天我来讲讲组合数学中的一种奇妙优化——Lucas 先看这样一个东西 没学过lucas的肯定会说:还不简单?处理逆元,边乘边膜呗 是,可以,但注意一下数据范围 你算这一次,你 ...

  5. [学习笔记]扩展LUCAS定理

    可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...

  6. hdu 3037 费马小定理+逆元除法取模+Lucas定理

    组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...

  7. Lucas定理初探

    1.1 问题引入 已知\(p\)是一质数,求\(\dbinom{n}{m}\pmod{p}\). 关于组合数,它和排列数都是组合数学中的重要概念.这里会张贴有关这两个数的部分内容. 由于Lucas定理 ...

  8. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  9. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

随机推荐

  1. 【170】◀▶ IDL 学习初体验-全

    IDL Reference 操作符号 数组 字符及字符串 结构体 指针 链表 & 哈希表 程序控制(循环.条件.跳转语句) 过程 & 函数 输入与输出 系统变量 文件系统操作 直接图形 ...

  2. debian下使用dpkg来安装/卸载deb包 (转载)

    转自:http://blog.csdn.net/zhou_2008/article/details/6076900 在debian下,你可以使用dpkg(Debian package system)来 ...

  3. 【Learning】多项式的一些东西

    FFT 坑 NTT 将\(FFT\)中的单位复数根改成原根即可. 卡常版NTT模版 struct Mul { int Len; int wn[N], Lim; int rev[N]; inline v ...

  4. bzoj 1029: [JSOI2007]建筑抢修【贪心+堆】

    第一想法是按照结束时间贪心,但是这样有反例 所以先按照t贪心,能选则选,把选的楼的持续时间放进大根堆里,当当前的楼不能选的时候如果当前的持续时间比大根堆里最大的要小,就用这个替换最大,这样总数不变但是 ...

  5. 03—AOP基本配置

  6. 转 PHP - AJAX 与 PHP

    1. AJAX 被用于创建交互性更强的应用程序. AJAX PHP 实例 下面的实例将演示当用户在输入框中键入字符时,网页如何与 Web 服务器进行通信: 实例 尝试在输入框中输入一个名字,如:Ann ...

  7. SQL数据库,增加查询修改以及防sql写入攻击

    SQL添加信息 SQL查询信息 SQL修改信息 SQL语句写入攻击: 普通语句添加信息 sql写入语句攻击: 解决方法:分开传送语句与参数关键:@

  8. how to do a mass update in Laravel5 ( 在Laravel 5里面怎么做大量数据更新 )

    Today, I had spent 3 hours to fix one problem, The old program has a bug, originally, when a user pr ...

  9. 一个用pyton写的监控服务端进程的软件hcm

    使用udp实现,简单,方便,不用三次握手 1. 所有部署服务器进程的机器有一个代理进程hagent,用来监听hcm console中发送过来的命令 2.hcm需要提供以下命令 start :普通方式启 ...

  10. clipboard.min.js 复制表格内容

    <script type="text/javascript" src="js/clipboard.min.js"></script> & ...