lucas定理和组合数学
自湖南长沙培训以来的坑。。。一直未填,今天把这个问题解决掉。
参考:
1.http://www.cnblogs.com/Var123/p/5523068.html
2.http://blog.csdn.net/qzh_1430586275/article/details/51893154
3.http://blog.csdn.net/check_check_check/article/details/52101467
一、lucas定理的定义
(当且仅当p为质数)
很简短,下面看看应用和相关题目。
二、lucas定理的应用
1、[bzoj4591][Shoi2015][超能粒子炮·改]
题目描述:求 C(n,0)+C(n,1)+...+C(n,k)mod2333
推到过程:
易得,
原式=C(n/2333,0)∗C(nmod2333,0)+C(n/2333,0)∗C(nmod2333,1)+...+C(n/2333,k/2333)∗C(nmod2333,kmod2333) mod 2333
也就是将原式中的各个mod 2333项拆分成两项再总体mod 2333
所以对于这道题,我们先预处理出一个S(n,k)=∑C(n,i) (i∈[0,k]) (当然最后都是mod p意义下的),ans=S(n%2333,2332)*(∑C(n/2333,j)) (j∈[0,k1)) + C(n/2333,k1)*S(n%2333,k%2333)
ans中的S()一定可以用二维的东西在规定时空内求出,而∑C(n/2333,j)就是我们超能粒子炮`改的子问题,递归求解即可,另,C(n/2333,k1)也可以用lucas定理递归来解
于是这道题就口头ac了。
lucas定理和组合数学的更多相关文章
- lucas定理,组合数学问题
对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...
- Bzoj 4403: 序列统计 Lucas定理,组合数学,数论
4403: 序列统计 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 328 Solved: 162[Submit][Status][Discuss] ...
- HDU 5226 Tom and matrix(组合数学+Lucas定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5226 题意:给一个矩阵a,a[i][j] = C(i,j)(i>=j) or 0(i < ...
- Lucas定理及应用
额,前两天刚讲了数据结构,今天我来讲讲组合数学中的一种奇妙优化——Lucas 先看这样一个东西 没学过lucas的肯定会说:还不简单?处理逆元,边乘边膜呗 是,可以,但注意一下数据范围 你算这一次,你 ...
- [学习笔记]扩展LUCAS定理
可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...
- hdu 3037 费马小定理+逆元除法取模+Lucas定理
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...
- Lucas定理初探
1.1 问题引入 已知\(p\)是一质数,求\(\dbinom{n}{m}\pmod{p}\). 关于组合数,它和排列数都是组合数学中的重要概念.这里会张贴有关这两个数的部分内容. 由于Lucas定理 ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
随机推荐
- bzoj2521
最小生成树+最小割 ...我太zz了,没看出来全体减1是一个加1,看见后就是sb题了... 我们发现根据克鲁斯卡尔的过程,我们把边从小到大加入,如果两点已经相连就跳过,那么我们把所有小于等于这条边的边 ...
- Linux 系统管理命令 - uptime - 显示系统的运行时间及负载
命令详解 重要星级: ★★★☆☆ 功能说明: uptime 命令可以输出当前系统时间.系统开机到现在的运行时间.目前有多少用户在线和系统平均负载等信息 语法格式: uptime 说明: 直接执行 up ...
- 堆和栈的区别【以java为例潜入分析】
Java的堆是一个运行时数据区,类的对象从中分配空间,这些对象通过new等指令建立. 堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,Java的垃圾收集器会自动 ...
- AutoCAD C# 利用反射导出所注册的命令
主函数导出某一程序集AutoCAD 注册命令 /// <summary> ///提取所有的命令 /// </summary> /// <param name=" ...
- 慕课网4-6 编程练习:jQuery后排兄弟选择器
4-6 编程练习 结合所学的兄弟选择器" ~ ",实现如下图所示效果: 任务 (1)使用兄弟选择器" ~ "将技术语言的背景色变成红色 (2)使用jQuery的 ...
- 在CentOS下安装VMware tool
VMware tools是虚拟机VMware Workstation自带的一款工具.它的作用就是使用户可以从物理主机直接往虚拟机里面拖文件.如果不安装它,我们是无法进行虚拟机和物理机之间的文件传输的. ...
- Mybatis Generator插件升级版
一.目的: 1. *mapper.java 文件名称 改为*DAO.java2. mapper以及mapper.xml 重复执行,只会覆盖原模板方法,不会覆盖自定义方法3. 实体类添加中文注释 二.步 ...
- linux学习之路6 Vi文本编辑器
vim是vi的增强版本 vim拥有三种模式: 命令模式(常规模式) vim启动后,默认进入命令模式.任何模式都可以通过按esc键回到命令模式(可以多按几次.命令模式可以通过键入不同的命令完成选择.复制 ...
- .net中RSA加密解密
1.产生密钥: private static void CreateKey() { using (RSACryptoServiceProvider rsa = new RSACryptoService ...
- 【转】Spark:Master High Availability(HA)高可用配置的2种实现
原博文出自于: 感谢! Spark Standalone集群是Master-Slaves架构的集群模式,和大部分的Master-Slaves结构集群一样,存在着Master单点故障的问题.如何解决这个 ...