Codeforces474E - Pillars
Description
给出一个\(n(n\leq10^5)\)的正整数序列\(\{a_n\}(a_i\leq10^{15})\)和正整数\(d(d\leq10^9)\),求\(\{a_n\}\)的一个子序列\(\{b_m\}\),使得\(\forall i\in[1,m-1],|b_i-b_{i-1}|\geq d\)。
Solution
跟求最长上升子序列的方法差不多。\(f[i]\)表示目前以数值\(i\)结尾的满足要求的序列长度,则:
> 时间复杂度$O(nlogn)$。
##Code
```cpp
//Pillars
#include <algorithm>
#include <cstdio>
#include <queue>
using namespace std;
typedef long long lint;
typedef std::pair<lint,int> pairI;
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline lint read()
{
lint x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
int const N=2e5+10;
int n,d,n0; lint h[N],map[N];
int rt,cnt,ch[N][2]; pairI maxV[N];
void update(int p) {maxV[p]=max(maxV[ch[p][0]],maxV[ch[p][1]]);}
lint L,R;
void ins(int p,lint L0,lint R0,pairI x)
{
if(L==L0&&R0==L) {maxV[p]=x; return;}
for(int i=0;i<2;i++) if(!ch[p][i]) ch[p][i]=++cnt;
lint mid=L0+R0>>1;
if(L<=mid) ins(ch[p][0],L0,mid,x);
else ins(ch[p][1],mid+1,R0,x);
update(p);
}
pairI query(int p,lint L0,lint R0)
{
if(L<=L0&&R0<=R) return maxV[p];
for(int i=0;i<2;i++) if(!ch[p][i]) ch[p][i]=++cnt;
lint mid=L0+R0>>1; pairI r=pairI(0,0);
if(L<=mid) r=max(r,query(ch[p][0],L0,mid));
if(mid<R) r=max(r,query(ch[p][1],mid+1,R0));
return r;
}
int ans,seq[N],pre[N];
int main()
{
n=read(),d=read();
for(int i=1;i<=n;i++) map[i]=h[i]=read();
sort(map+1,map+n+1); n0=unique(map+1,map+n+1)-map-1;
for(int i=1;i<=n;i++) h[i]=lower_bound(map+1,map+n0+1,h[i])-map;
rt=++cnt;
for(int i=1;i<=n;i++)
{
int x=upper_bound(map+1,map+n0+1,map[h[i]]-d)-map-1;
int y=lower_bound(map+1,map+n0+1,map[h[i]]+d)-map;
int len=0; pairI t=pairI(0,0);
L=1,R=x; if(L<=R) t=query(rt,1,n0);
if(t.first>len) len=t.first,pre[i]=t.second;
L=y,R=n0; if(L<=R) t=query(rt,1,n0);
if(t.first>len) len=t.first,pre[i]=t.second;
L=h[i],ins(rt,1,n0,pairI(len+1,i));
}
L=1,R=n0; pairI t=query(rt,1,n0);
ans=t.first; printf("%d\n",ans);
for(int i=ans,x=t.second;i>=1;i--,x=pre[x]) seq[i]=x;
for(int i=1;i<=ans;i++) printf("%d ",seq[i]); puts("");
return 0;
}
```
##P.S.
老师留的那天忘记写了...真是怠惰啊
一开始懒到不想写离散化于是开了个$10^{15}$的动态开点线段树,结果`MLE`了。\]
Codeforces474E - Pillars的更多相关文章
- Codeforces 474 E. Pillars
水太...... E. Pillars time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Grains 与 Pillars
Grains 与 Pillars Grains介绍 Grains接口是salt用来采集底层系统信息的,包含了操作系统信息.域名.IP地址.内核.内存等一些底层信息.就是因为grains采集了这些信息, ...
- Codeforces Round #271 (Div. 2) E. Pillars 线段树优化dp
E. Pillars time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- 【BZOJ 4148】 4148: [AMPPZ2014]Pillars (乱搞)
4148: [AMPPZ2014]Pillars Time Limit: 5 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 100 Solve ...
- [CF 474E] Pillars (线段树+dp)
题目链接:http://codeforces.com/contest/474/problem/F 意思是给你两个数n和d,下面给你n座山的高度. 一个人任意选择一座山作为起始点,向右跳,但是只能跳到高 ...
- 【CF】474E Pillars
H的范围是10^15,DP方程很容易想到.但是因为H的范围太大了,而n的范围还算可以接受.因此,对高度排序排重后.使用新的索引建立线段树,使用线段树查询当前高度区间内的最大值,以及该最大值的前趋索引. ...
- Codeforces 474E - Pillars
一眼看上去非常像最长不下降子序列. 然后比赛的时候对每个答案长度为k的序列,维护最后一个数的最大值和最小值. 当时不知道为什么认为从长度最长倒推至前面不会太长,于是心满意足地敲了个O(n^2).结果T ...
- Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)
题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...
- html5 Websockets development guidance
1. WebSockets -- full-duplex communication The main HTML5 pillars include Markup, CSS3, and JavaScri ...
随机推荐
- C++ thread operator= 右值引用 vector foreach
这是 thread 的construct定义: default (1) thread() noexcept; initialization (2) template <class Fn, cla ...
- Webform 内置对象2(Session、Application)、Repeater的Command操作
内置对象: 1.Session:跟Cookies一样用来存储用户数据,但保存位置不同,保存在服务器内存上 每一台电脑访问服务器,都会是独立的一套session,key值都一样,但是内容都是不一样的 S ...
- Vue2.0实现路由
Vue2.0和1.0实现路由的方法有差别,现在我用Vue 2.0实现路由跳转,话不多说,直接上代码 HTML代码 <div class="tab"> <route ...
- JavaScript创建对象的七种方法
一. 工厂模式 创建: function createPerson(name,behavior){ var p=new Object(); p.name=name; p.behavior=behavi ...
- iOS 利用UIWebView与JavaScript交互的最简单办法
这里说的是针对iOS的!并且方法很简单!!并且验证可行的!!! 1, UIWebView调用 JavaScript 的函数: NSString* strValue = [webView stringB ...
- 031_spark架构原理
spark核心组件 driver master worker executor task(只有task是线程) 核心组件的原理图解
- SAP云平台架构概述
在我们开始SAP云平台的架构之旅之前,让我们先看看SAP已经发布的一些其他云产品.这些云产品方案可以分为公有云和私有云两种. SAP公有云解决方案见下图最右侧,比较著名的有SAP SuccessFac ...
- EXCEL Skills Commonly Used
1. 判断某一列中的数据是否在另一列中 http://jingyan.baidu.com/article/358570f67fd4b0ce4724fc29.html 2. 快速删除excel中的空格( ...
- Qt学习笔记12:基本会话框4——总结
文件对话框静态函数 QString QFileDialog::getOpenFileName{ QWidget *parent = 0; //标准文件对话框的父窗口 const QString &am ...
- VMware 彻底删除虚拟机操作系统的方法
方法一 首先,都需要点击左边的虚拟机列表,选中你要删除的操作系统 点击VMwae上方的虚拟机-管理-从硬盘删除. 方法二 右键左侧列表中要删除的系统-移除. 然后在硬盘上找到其所在文件夹,直接按SHI ...