Description

一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},

1 = 1

2 = 1+1

3 = 1+1+1

4 = 4

5 = 4+1

6 = 4+1+1

7 = 4+1+1+1

8无法表示为集合S的子集的和,故集合S的神秘数为8。

现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。

Input

第一行一个整数n,表示数字个数。
第二行n个整数,从1编号。
第三行一个整数m,表示询问个数。
以下m行,每行一对整数l,r,表示一个询问。

Output

对于每个询问,输出一行对应的答案。

Sample Input

5
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5

Sample Output

2
4
8
8
8

HINT

对于100%的数据点,n,m <= 100000,∑a[i] <= 10^9

/*
用主席树维护某个状态中数值在某个范围内的个数。
*/
#include<cstdio>
#include<iostream>
#define N 100010
using namespace std;
int ch[N*][],sum[N*],a[N],root[N];
int n,m,mx,size;
void add(int pre,int &k,int l,int r,int v){
if(!k)k=++size;
sum[k]=sum[pre]+v;
if(l==r)return;
int mid=l+r>>;
if(v<=mid){
ch[k][]=ch[pre][];
add(ch[pre][],ch[k][],l,mid,v);
}
else {
ch[k][]=ch[pre][];
add(ch[pre][],ch[k][],mid+,r,v);
}
}
int query(int pre,int k,int l,int r,int v){
if(v>=r) return sum[k]-sum[pre];
int mid=l+r>>;
if(v>mid) return sum[ch[k][]]-sum[ch[pre][]]+query(ch[pre][],ch[k][],mid+,r,v);
else return query(ch[pre][],ch[k][],l,mid,v);
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]),mx=max(mx,a[i]);
for(int i=;i<=n;i++)
add(root[i-],root[i],,mx,a[i]);
scanf("%d",&m);
for(int i=;i<=m;i++){
int l,r,ans=;
scanf("%d%d",&l,&r);
while(){
int sum=query(root[l-],root[r],,mx,ans);
if(sum<ans)break;
ans=sum+;
}
printf("%d\n",ans);
}
return ;
}

神秘数(bzoj 4408)的更多相关文章

  1. ●BZOJ 4408 [Fjoi 2016]神秘数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 题解: 主席树 首先,对于一些数来说, 如果可以我们可以使得其中的某些数能够拼出 1- ...

  2. Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 128[Submit][Status ...

  3. BZOJ 4408: [Fjoi 2016]神秘数

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 464  Solved: 281[Submit][Status ...

  4. BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树

    4408: [Fjoi 2016]神秘数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 Description 一个可重复数字集 ...

  5. BZOJ 4408: [Fjoi 2016]神秘数 [主席树]

    传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...

  6. bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...

  7. BZOJ 4408 FJOI2016 神秘数 可持久化线段树

    Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 ...

  8. 4408: [Fjoi 2016]神秘数

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 452  Solved: 273 [Submit][Stat ...

  9. 【BZOJ4408】[FJOI2016]神秘数(主席树)

    [BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...

随机推荐

  1. 【转】几种Java序列化方式的实现

    0.前言 本文主要对几种常见Java序列化方式进行实现.包括Java原生以流的方法进行的序列化.Json序列化.FastJson序列化.Protobuff序列化. 1.Java原生序列化 Java原生 ...

  2. HTML的历史与历史遗留问题

    1. <style type="text/css"> 从前,HTML的设计者认为以后应该还会有其他样式,不过如今我们已经醒悟,事实表明,完全可以只使用<style ...

  3. 【python】入门级识别验证码

    前情:这篇文章所提及的内容是博主上个暑假时候做的,一直没有沉下心来把自己的心得写在纸面上,所幸这个假期闲暇时候比较多,想着能写多少是多少,于是就有了此篇. 验证码?我也能破解? 关于验证码的介绍就不多 ...

  4. word打印小册子

    使用联想m7250f打印册子,打印时设置该打印机属性为双面打印(手动),打印第一面后,将所有打印出的纸拿出并翻转使对应word中的第2页的打印纸朝外,之后将所有纸放入纸盒,再点击打印第二面即可.

  5. java大文件读写操作,java nio 之MappedByteBuffer,高效文件/内存映射

    java处理大文件,一般用BufferedReader,BufferedInputStream这类带缓冲的Io类,不过如果文件超大的话,更快的方式是采用MappedByteBuffer. Mapped ...

  6. (转)Spring管理的Bean的生命周期

    http://blog.csdn.net/yerenyuan_pku/article/details/52834011 bean的初始化时机 前面讲解了Spring容器管理的bean的作用域.接着我们 ...

  7. Java并发编程之原子操作类

    什么是原子操作类当更新一个变量的时候,多出现数据争用的时候可能出现所意想不到的情况.这时的一般策略是使用synchronized解决,因为synchronized能够保证多个线程不会同时更新该变量.然 ...

  8. DROP SEQUENCE - 删除一个序列

    SYNOPSIS DROP SEQUENCE name [, ...] [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP SEQUENCE 从数据库中删除序列号生成 ...

  9. 数据库课程设计 PHP web实现

    纪念一下自己写的东西.. 都说很垃圾就是了 直接用XAMPP做的 菜鸟网上学的PHP和HTML <!DOCTYPE html> <html> <head> < ...

  10. 执行BarTender

    1.配置.btw模板 1.1.左侧创建“具名数据源” 1.2.条码属性,选择刚才的数据源 1.3.保存 2.配置.btin服务 2.1.点击 工具/Integration Builder” 2.2.创 ...