Polygon



$ solution: $

upd:还是多讲一下,这道题基本上可以说是一道思维题、一道结论题、一道考验你动态规划基本功是否扎实的题目。因为这道题的数据范围很小,思考一下总能想到断环成链的(因为去处环形后效性的方法就两个,一个是断环成链,另一个就是将环等效成两次线性DP,但是后者有条件)。然后,这一题还有一个更重要的东西,他只涉及加法和乘法(注意这里有乘法),当我们使用动态规划时应该要注意它需要能从阶段的最优性得到答案的最优结果!以前我们使用动态规划时权值往往维护一个最大或最小值即可,但这一题不一样。

因为这一道题它有乘法还有负数!所以如果我们动态规划维护的是最大值,我用它乘上一个负数,那它就直接变成了一个较小值!所以我们如果要最优子结构能转移到最优答案,这个子结构还需要维护一个最小值(因为两个小的负数相乘可以得到一个大正数)!所以这一题最大最小对我们得出答案都有用(而且只需要他们两个即可,较小值比不过最小值)。这是这一题最难以突破的一个地方,想到之后就是一道结论题了。



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int using namespace std; inline int min(int x,int y){
if(x<y)return x;
return y;
}
inline int max(int x,int y){
if(x>y)return x;
return y;
} int n,t,m;
int a[105];
int ans[55];
bool b[105],s[105]; struct su{
int x,y;
inline void add(su i,su j){
x=max(x,i.x+j.x);
y=min(y,i.y+j.y);
}
inline void mul(su i,su j){
x=max(x,i.x*j.x);
x=max(x,i.y*j.y);
y=min(y,i.y*j.y);
y=min(y,i.x*j.y);
y=min(y,i.y*j.x);
}
}f[55][55]; inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar())) if(ch=='-')sign=1;
while(isdigit(ch)) res=res*10+(ch^48),ch=getchar();
return sign?-res:res;
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr(); char ch;
for(rg i=1;i<=n;a[n+i]=a[i]=qr(),++i)
cin>>ch,b[n+i]=b[i]=(ch=='x');
for(rg o=1;o<=n;++o){ t=0;
for(rg i=1;i<=n;++i)
for(rg j=1;j<=n;++j)
f[i][j].x=-inf,f[i][j].y=inf;
for(rg i=o;i<o+n;i++)
s[++t]=b[i+1],f[t][t].x=f[t][t].y=a[i];
for(rg l=1;l<n;++l){
for(rg i=1,j=i+l;j<=n;++i,++j){
for(rg k=i;k<j;++k){
if(s[k])f[i][j].mul(f[i][k],f[k+1][j]);
else f[i][j].add(f[i][k],f[k+1][j]);
}
}
}ans[o]=f[1][n].x; m=max(m,ans[o]);
}printf("%d\n",m);
for(rg i=1;i<=n;++i)
if(ans[i]==m)printf("%d ",i);
return 0;
}

poj 1179 $Polygon$(断环成链)的更多相关文章

  1. P1880 [NOI1995]石子合并 区间dp+拆环成链

    思路 :一道经典的区间dp  唯一不同的时候 终点和起点相连  所以要拆环成链  只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...

  2. HDU 3966 & POJ 3237 & HYSBZ 2243 树链剖分

    树链剖分是一个很固定的套路 一般用来解决树上两点之间的路径更改与查询 思想是将一棵树分成不想交的几条链 并且由于dfs的顺序性 给每条链上的点或边标的号必定是连着的 那么每两个点之间的路径都可以拆成几 ...

  3. POJ 2763 Housewife Wind (树链剖分 有修改单边权)

    题目链接:http://poj.org/problem?id=2763 n个节点的树上知道了每条边权,然后有两种操作:0操作是输出 当前节点到 x节点的最短距离,并移动到 x 节点位置:1操作是第i条 ...

  4. hdu4714 Tree2cycle 把树剪成链

    题目是问把一棵树通过剪边.加边形成一个环的最小代价. 分成两步,先把树剪成一些链,再把链连接成一个环. 设一棵有n个节点的树,剪掉X条边后,形成L条链. 那么代价为X+L. n-1-X=edgeNum ...

  5. poj 3237 Tree(树链剖分,线段树)

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 7268   Accepted: 1969 Description ...

  6. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  7. POJ 3237 Tree (树链剖分)

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 2825   Accepted: 769 Description ...

  8. POJ 2763 Housewife Wind 树链拋分

    一.前言 这破题WA了一天,最后重构还是WA,最后通过POJ讨论版得到的数据显示,我看上去是把某个变量写错了..于是,还是低级错误背锅啊....代码能力有待进一步提升2333333 二.题意 某家庭主 ...

  9. poj 2763 Housewife Wind(树链拆分)

    id=2763" target="_blank" style="">题目链接:poj 2763 Housewife Wind 题目大意:给定一棵 ...

随机推荐

  1. POJ——2449Remmarguts' Date(A*+SPFA)

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 26504   Accepted: 7203 ...

  2. hihoCoder1381 - Little Y's Tree

    Portal Description 给出一个\(n(n\leq10^5)\)个点的带边权的树.进行\(Q\)次询问:每次删除树上的\(k\)条边,求剩下的\(k+1\)个连通块中最远点对距离的和.\ ...

  3. mock数据。根据表中一天的数据模拟其他日期的数据

    package test; import java.sql.*; import java.text.SimpleDateFormat; import java.util.*; import java. ...

  4. CI(CodeIgniter)框架中的增删改查操作

    我们创建一个模型( 项目目录/models/),请注意:模型名与文件名相同且必须继承数据核心类CI_Model,同时重载父类中的构造方法 CodeIgniter的数据函数类在 \models\User ...

  5. linux命令dhclient

    linux命令 dhclient 背景 多台服务器(CentOS7 系统)设置静态IP,其中有台服务器设置了静态IP后,只要重启就变更为其他的,但是配置文件并无改动. 使用命令 #自动获取IP dhc ...

  6. ElasticSearch聚合aggs入门

    Elasticsearch是一款功能强大的开源软件,不仅可以检索排序,还可以对文档进行更复杂的操作--聚合. 1.单值聚合 Sum求和,dsl参考如下: { "size": 0, ...

  7. *AtCoder Regular Contest 096E - Everything on It

    $n \leq 3000$个酱,丢进拉面里,需要没两碗面的酱一样,并且每个酱至少出现两次,面的数量随意.问方案数.对一给定质数取模. 没法dp就大力容斥辣.. $Ans=\sum_{i=0}^n (- ...

  8. 关于代码调试de那些事

    原文出处:http://www.wklken.me/posts/2014/11/23/how-to-debug.html 关于代码调试de那些事 1.你得明白你在做什么, 保持清醒 2.想清楚了再写代 ...

  9. laravel的视图

    //输出视图 //建立控制器方法public function hello_test(){ return view('member/hello_test',['name'=>'张三','age' ...

  10. SELinux 服务检查与关闭

    查看SELinux状态: 1./usr/sbin/sestatus -v      ##如果SELinux status参数为enabled即为开启状态 SELinux status:         ...