P3524 最大半连通子图
时间: 3000ms / 空间: 165536KiB / Java类名: Main

描述

输入格式

第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述。接下来M行,每行两个正整数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。

输出格式

应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.

测试样例1

输入

6 6 20070603 
1 2 
2 1 
1 3 
2 4 
5 6 
6 4

输出


3

备注

对于20%的数据, N ≤18; 
对于60%的数据, N ≤10000; 
对于100%的数据, N ≤100000, M ≤1000000; 
对于100%的数据, X ≤10^8。

最开始的时候没有考虑到有环的时候,他可以连续跑,就没有进行缩点,结果就只能A第二个点

后来wa掉以后发现如果有环的时候不进行缩点的话,由于两个不相同的半联通子图满足他们至少有一个点不相同,而如果按照我上面的思路的话我们下面的图跑出来会是3个半连通子图,而且最长的链会是3而正确结果是2 1

这样的话我们就必须缩点了,我们先tarjan求强连通分量,然后在进行缩点,对跑出来的新图进行拓扑排序,然后在拓扑排序里面加dp。

仔细考虑了一下,好像我dfs然后在加暴力枚举根本就不可行、、、

#include<queue>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 1100000
using namespace std;
bool vis[N],vist[N];
int n,m,x,y,s,tot,tat,mod,ans1,ans2,top,tim;
int in[N],ss[N],dfn[N],low[N],head[N],head1[N],ans[N],sum[N],stack[N],belong[N];
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
struct Edge
{
    int to,from,next;
}edge[N],edge1[N];
int add(int x,int y)
{
    tot++;
    edge[tot].to=y;
    edge[tot].from=x;
    edge[tot].next=head[x];
    head[x]=tot;
}
int add1(int x,int y)
{
    tat++;
    edge1[tat].to=y;
    edge1[tat].from=x;
    edge1[tat].next=head1[x];
    head1[x]=tat;
}
int tarjan(int now)
{
    dfn[now]=low[now]=++tim;
    vis[now]=true; stack[++top]=now;
    for(int i=head[now];i;i=edge[i].next)
    {
        int t=edge[i].to;
        if(vis[t]) low[now]=min(low[now],dfn[t]);
        else if(!dfn[t]) tarjan(t),low[now]=min(low[now],low[t]);
    }
    if(low[now]==dfn[now])
    {
        s++,belong[now]=s,ss[s]++;
        for(;stack[top]!=now;top--)
         belong[stack[top]]=s,vis[stack[top]]=false,ss[s]++;
        vis[now]=false,top--;
    }
}
int shink_point()
{
    ;i<=n;i++)
     for(int j=head[i];j;j=edge[j].next)
      if(belong[i]!=belong[edge[j].to])
        add1(belong[i],belong[edge[j].to]);
}
int dfs(int x)
{
    vist[x]=true;
    for(int i=head1[x];i;i=edge1[i].next)
    {
        int t=edge1[i].to;
        if(!vist[t]) dfs(t);
        ;
    }
    vist[x]=false;
}
int tpsort(int s,int * in)
{
    memset(sum,,sizeof(sum));
    queue<int>q;
    q.push(s);sum[s]=ss[s];
    while(!q.empty())
    {
        int x=q.front();q.pop();
        for(int i=head1[x];i;i=edge1[i].next)
        {
            int t=edge1[i].to;
            ) continue;
            in[t]--;
            ) q.push(t);
            sum[t]=max(sum[t],sum[x]+ss[t]);
        }
    }
}
int main()
{
    n=read(),m=read();mod=read();
    ;i<=m;i++)
     x=read(),y=read(),add(x,y);
    ;i<=n;i++)
     if(!dfn[i]) tarjan(i);
    shink_point();
    memset(vis,,sizeof(vis));
    ;i<=n;i++)
    {
        if(vis[belong[i]]) continue;
        vis[belong[i]]=true;
        memset(,sizeof(in));
        dfs(belong[i]);tpsort(belong[i],in);
        sort(sum+,sum++n);
        ans[i]=sum[n];
        ans1=max(ans1,ans[i]);
     }
    ;i<=s;i++)
     if(ans[i]==ans1) ans2++;
    printf("%d\n%d\n",ans1,ans2);
    ;
}

20分tle代码

怎么跑??

我们先考虑一个问题:在tarjan缩完点以后我们在建新图的时候一定会建出重边来,但是我们要进行拓扑排序的话就不可以有重边,所以我们要在进行缩点后建图的时候一定要判断这条边是否是重边,我们用一个map数组来判断。

然后我们在拓扑排序里面跑dp,为什么要用拓扑排序??因为通拓扑排序可以很容易的找出最长链。

怎么dp??     我们在第一部找出它的最大半联通子图的时候,其实找的就是最长链,我们把它最长链里面的权值进行合并就行。我们用一个ans记录到达当前点的最大权值,用v表示当前节点,用x表示与v连通那个点。由于我们有好几条路径可以到达v点,而我们要统计的是最大的半连通子图的大小,所以我们在对当前点更新的时候则为ans[v]=max(ans[v],ans[x])为什么是这样??因为我们对于每一条链的ans[x]是一直在更新的。这样我们就可以把最大的半联通子图统计出来。ans1=max(ans1,ans[i]).其次我们还要统计方案数。我们用数组dp记录到当前点的方案数,用数组deep记录到当前点的子图的大小, 然后我们判断这个点的deep值是否等于他父节点的deep值(暂且这样叫吧、、)如果相等的话就说明出现了另一种方案数,那么dp[t]=dp[t]+dp[x](加法原理其内容是:做一件事情,完成它有N类方式,第一类方式有M1种方法,第二类方式有M2种方法,……,第N类方式有M(N)种方法,那么完成这件事情共有M1+M2+……+M(N)种方法。)如果当前点的deep小与其父节点的deep那么我们对其dp进行修改,dp[t]=dp[x],deep[t]=deep[x]

#include<map>
#include<queue>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 110000
using namespace std;
bool vis[N],vist[N];
int n,m,x,y,s,tot,tat,mod,ans1,ans2,top,tim;
],head1[],ans[N],sum[N],stack[N],belong[N];
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
struct Edge
{
    int to,from,next;
}edge[],edge1[];
int add(int x,int y)
{
    tot++;
    edge[tot].to=y;
    edge[tot].from=x;
    edge[tot].next=head[x];
    head[x]=tot;
}
int add1(int x,int y)
{
    tat++;
    edge1[tat].to=y;
    edge1[tat].from=x;
    edge1[tat].next=head1[x];
    head1[x]=tat;
}
int tarjan(int now)
{
    dfn[now]=low[now]=++tim;
    vis[now]=true; stack[++top]=now;
    for(int i=head[now];i;i=edge[i].next)
    {
        int t=edge[i].to;
        if(vis[t]) low[now]=min(low[now],dfn[t]);
        else if(!dfn[t]) tarjan(t),low[now]=min(low[now],low[t]);
    }
    if(low[now]==dfn[now])
    {
        s++,belong[now]=s,sum[s]++;
        for(;stack[top]!=now;top--)
         belong[stack[top]]=s,vis[stack[top]]=false,sum[s]++;
        vis[now]=false,top--;
    }
}
map<int,int>ma[N];
int shink_point()
{
    ;i<=n;i++)
     for(int j=head[i];j;j=edge[j].next)
      if(belong[i]!=belong[edge[j].to])
          )
          {
              add1(belong[i],belong[edge[j].to]);
              in[belong[edge[j].to]]++;
        }
}
int tpsort()
{
    queue<int>q;
    ;i<=s;i++)
     ;
    while(!q.empty())
    {
        int x=q.front();q.pop();ans[x]+=sum[x],deep[x]+=sum[x];
        for(int i=head1[x];i;i=edge1[i].next)
        {
            int t=edge1[i].to;
            in[t]--;
            if(!in[t]) q.push(t);
            ans[t]=max(ans[t],ans[x]);
            if(deep[t]==deep[x])
             dp[t]=(dp[t]+dp[x])%mod;
            else if(deep[t]<deep[x])
             dp[t]=dp[x],deep[t]=deep[x];
        }
    }
    ;i<=n;i++) ans1=max(ans1,ans[i]);
    ;i<=n;i++)
     if(ans[i]==ans1) ans2=(ans2+dp[i])%mod;
}
int main()
{
    n=read(),m=read();mod=read();
    ;i<=m;i++)
     x=read(),y=read(),add(x,y);
    ;i<=n;i++)
     if(!dfn[i]) tarjan(i);
    shink_point(); tpsort();
    printf("%d\n%d\n",ans1,ans2);
    ;
}

tyvj——P3524 最大半连通子图的更多相关文章

  1. 最大半连通子图 bzoj 1093

    最大半连通子图 (1.5s 128MB) semi [问题描述] 一个有向图G = (V,E)称为半连通的(Semi-Connected),如果满足:∀ u, v ∈V,满足u->v 或 v - ...

  2. BZOJ1093 [ZJOI2007]最大半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  3. BZOJ 1093 [ZJOI2007] 最大半连通子图(强联通缩点+DP)

    题目大意 题目是图片形式的,就简要说下题意算了 一个有向图 G=(V, E) 称为半连通的(Semi-Connected),如果满足图中任意两点 u v,存在一条从 u 到 v 的路径或者从 v 到 ...

  4. BZOJ1093 最大半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到 ...

  5. BZOJ 1093 [ZJOI2007]最大半连通子图

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1986  Solved: 802[Submit][St ...

  6. bzoj 1093 [ZJOI2007]最大半连通子图(scc+DP)

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2286  Solved: 897[Submit][St ...

  7. BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )

    WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...

  8. [BZOJ]1093 最大半连通子图(ZJOI2007)

    挺有意思的一道图论. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...

  9. bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

随机推荐

  1. vue2.0组件生命周期探讨

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  2. tac命令

    tac——显示文件内容(反列显示) 命令所在路径:/usr/bin/tac 示例1: # tac /etc/hosts 反列显示/etc/目录下hosts文件内容 ☛适合查看内容较短的文件

  3. 第一周作业javaee strainmap

  4. html归纳

      onload的用法 表格属性 定时器(测试能否让for循环暂停5秒) 实现表格的滚动条效果 ① table中th的样式:  white-space: nowrap;  单元格内容不换行:② 设置装 ...

  5. chart 图片组件 生成后不能动态更新,需要销毁dom,从新载入 用 v-if 和 this.$nextTick(() => {

    <chart-box v-if="cbData1Bool" cb-text="基本概况" chartBoxSele="饼状图" :cb ...

  6. python基础一 day8 函数

    函数的定义与函数的调用是两个部分 定义函数的时候里面的代码不执行,等到调用函数的时候再执行 只写return和不写return返回None 函数遇到return,这个函数就被结束            ...

  7. Android Studio集成crashlytics后无法编译的问题

    http://blog.csdn.net/zhuobattle/article/details/50555393 问题描述: 在用fabric集成后编译出现如下错误, Error:Cause: hos ...

  8. 尺取法 || emmmm

    给定两个上升的数组,一个数组任取一个数,求两个数差的min 尺取法emm 也不知道对不对 #include <stdio.h> #include <stdlib.h> #def ...

  9. Visual Odometry

    http://www.cvlibs.net/datasets/kitti/eval_odometry.php

  10. SQL Server连接不上本地服务器

    昨天星期一,到公司,如常打开电脑后,上个厕所,吃个早餐,电脑才完全醒来.打开项目后台,发现登不上,用户名或密码错误,认真输入几遍,还是错误,打开本地数据库,sql server连接不上,提示错误: 我 ...