题目:

洛谷2257

预备知识:莫比乌斯定理(懵逼乌斯定理)

\(\mu*1=\epsilon\)(证bu明hui略zheng)

其中(我校学长把\(\epsilon(x)\)叫单位函数但是为什么我没百度到qwq)

\[\epsilon(x)=\begin{cases}1 & x=1\\
0 & x\neq1\\
\end{cases}\]

\[\mu(x)=\begin{cases}1 & x=1\\
0 & 存在质数p使p^2|x\\
(-1)^k & k是x质因数的个数 \end{cases}\]

那个\(*\)是迪利克雷卷积,换成人话就是

\[\epsilon(n)=\sum_{d|n}\mu(d)
\]

我觉得用这种方式理解莫比乌斯定理比设两个函数容易

分析:

这题莫比乌斯定理的经典用例。

本文中默认\(N>M\)

默认\(p\)是质数

显然如果\(gcd(i,j)=p\),那么\(gcd(\frac{i}{p}, \frac{j}{p})=1\)

那么题目所求可以转换成下面的式子

\[\sum_{p}^N\sum_i^{N/p}\sum_j^{M/p}\epsilon(gcd(i,j))
\]

其中(我校学长把这个叫单位函数但是我没百度到qwq)

\[\epsilon(x)=\begin{cases}1 & x=1\\
0 & x\neq1\\
\end{cases}\]

根据莫比乌斯反演定理,上面的式子就可以变成

\[\sum_{p=2}^N\sum_i^{N/p}\sum_j^{M/p}\sum_{d|gcd(i,j)}\mu(d)
\]

改变一下枚举顺序,用\(d·i\)表示原来的\(i\),\(d·j\)表示原来的\(j\),得到

\[\sum_{p=2}^N\sum_d^{N/p}\sum_i^{N/pd}\sum_j^{M/pd}\mu(d)
\]

可以发现\(\mu(d)\)和\(i\)、\(j\)没半毛钱关系,仅仅是乘上\(i\)和\(j\)可以取的值的数量

也就是

\[\sum_{p=2}^N\sum_d^{N/p}\mu(d)*\lfloor\frac{N}{pd}\rfloor*\lfloor\frac{M}{pd}\rfloor
\]

令\(T=pd\),枚举T,上式可变成

\[\sum_T^N\sum_{p|T}\mu(\frac{T}{p})*\lfloor\frac{N}{T}\rfloor*\lfloor\frac{M}{T}\rfloor
\]

设$$g(x)=\sum_{p|x}\mu(\frac{x}{p})$$

则上式就是

\[\sum_T^N\lfloor\frac{N}{T}\rfloor*\lfloor\frac{M}{T}\rfloor*g(T)
\]

现在考虑如何求\(g(x)\)这个函数。

首先,对于任意质数\(p\),显然\(g(p)=\mu(1)=1\)

然后,对于任意合数\(n=kp_0\)(\(p_0\)是质数)\(g(n)\)中显然存在\(\mu(\frac{n}{p_0})\)也就是\(\mu(k)\)这一项

当\({p_0}|k\),也就是\(p_0^2|n\),对于任意\(p|k\)且\(p\neq p_0\),\(\mu(\frac{n}{p})\)中一定有\(p_0^2\)这个质数平方因子。根据\(\mu(x)\)的定义,\(\mu(\frac{n}{p})=0\)

所以此时\(g(n)=\mu(k)\)

当\(p_0\)不能整除\(k\),对于任意\(p|k\),\(\mu(\frac{n}{p})\)比\(\mu(\frac{k}{p})\)多了\(p_0\)这个质因子。根据\(\mu(x)\)的定义\(\mu(\frac{n}{p})=-\mu(\frac{k}{p})\)

所以此时\(g(n)=-g(k)+\mu(k)\)

总结一下

\[g(x)=\begin{cases}1 & x是质数\\
\mu(k) & x=kp且p能整除k\\
-g(k)+\mu(k) & x=kp且p不能整除k
\end{cases}\]

显然这个函数可以用线性筛求

\[\sum_T^N\lfloor\frac{N}{T}\rfloor*\lfloor\frac{M}{T}\rfloor*g(T)
\]

再来看这个式子,既然\(g(T)\)可以直接预处理并\(O(1)\)查询,那么计算这个式子的时间复杂度就是枚举\(T\)的复杂度\(O(N)\)

我会做啦!

别急,这题还有\(T\)组询问,所以复杂度是O(不可过)\(O(NT)\),这个过不了。

但是我们可以发现\(\lfloor\frac{N}{T}\rfloor*\lfloor\frac{M}{T}\rfloor\)在\(T\)的一段区间内是不变的,所以可以给\(g(T)\)算个前缀和然后分段计算,据说复杂度是\(O(\sqrt N T)\)的(我不会证),这样就可以过了

代码:

  1. #include <cstdio>
  2. #include <algorithm>
  3. #include <cstring>
  4. using namespace std;
  5. namespace zyt
  6. {
  7. typedef long long ll;
  8. const int N = 1e7 + 10, M = 7e5;
  9. bool mark[N];
  10. int cnt, prime[M], phi[N], mu[N];
  11. ll g[N];
  12. void init()
  13. {
  14. mu[1] = 1;
  15. for (int i = 2; i < N; i++)
  16. {
  17. if (!mark[i])
  18. prime[cnt++] = i, mu[i] = -1, g[i] = 1;
  19. for (int j = 0; j < cnt && (ll)i * prime[j] < N; j++)
  20. {
  21. int k = i * prime[j];
  22. mark[k] = true;
  23. if (i % prime[j] == 0)
  24. {
  25. mu[k] = 0;
  26. g[k] = mu[i];
  27. break;
  28. }
  29. else
  30. {
  31. mu[k] = -mu[i];
  32. g[k] = -g[i] + mu[i];
  33. }
  34. }
  35. }
  36. for (int i = 2; i < N; i++)
  37. g[i] += g[i - 1];
  38. }
  39. void work()
  40. {
  41. int T;
  42. init();
  43. scanf("%d", &T);
  44. while (T--)
  45. {
  46. int n, m, pos = cnt;
  47. ll ans = 0;
  48. scanf("%d%d", &n, &m);
  49. if (n > m)
  50. swap(n, m);
  51. for (int t = 1; t <= n;)
  52. {
  53. int tmp = min(n / (n / t), m / (m / t));
  54. ans += (g[tmp] - g[t - 1]) * (n / t) * (m / t);
  55. t = tmp + 1;
  56. }
  57. printf("%lld\n", ans);
  58. }
  59. }
  60. }
  61. int main()
  62. {
  63. zyt::work();
  64. return 0;
  65. }

【洛谷2257/BZOJ2820】YY的GCD(数论/莫比乌斯函数)的更多相关文章

  1. 【洛谷2257】YY的GCD(莫比乌斯反演)

    点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^MIsPrime(gcd(x,y))\). 莫比乌斯反演 听说此题是莫比乌斯反演入门题? 一些定义 首先,我们可以定义\(f ...

  2. BZOJ2820 YY的GCD 【莫比乌斯反演】

    BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...

  3. LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)

    LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...

  4. 洛谷 P2257 【YY的GCD】

    这道题还是和上一道[ZAP]有那么一点点的相似哈 题目大意 给定N, M,求1<=x<=N, 1<=y<=M且\(gcd(x, y)\)为质数的(x, y)有多少对 如果对莫比 ...

  5. 【洛谷P2257】YY的GCD

    题目大意:有 \(T\) 个询问,每个询问给定 \(N, M\),求 \(1\le x\le N, 1\le y\le M\) 且 \(gcd(x, y)\) 为质数的 \((x, y)\) 有多少对 ...

  6. BZOJ 2820 YY的GCD(莫比乌斯函数)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2820 题意:给定n,m.求1<=x<=n, 1<=y<=m且Gc ...

  7. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  8. [BZOJ2820]YY的GCD

    [BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

  9. BZOJ2820 YY的GCD 莫比乌斯+系数前缀和

    /** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...

随机推荐

  1. Leetcode 123.买卖股票的最佳时机III

    买卖股票的最佳时机III 给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你最多可以完成 两笔 交易. 注意: 你不能同时参与多笔交易(你 ...

  2. nyoj 63 小猴子下落

    小猴子下落 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 有一颗二叉树,最大深度为D,且所有叶子的深度都相同.所有结点从左到右从上到下的编号为1,2,3,····· ...

  3. github & Front-end JavaScript frameworks

    github & Front-end JavaScript frameworks https://github.com/collections/front-end-javascript-fra ...

  4. jquery动态为个span,input,div,等标签赋值的方法总结,js动态隐藏div

    1.jquery为span和div标签赋值. <span id="span1"></span> <div id="div1"> ...

  5. ORACLE分区表删除分区数据

    --全删除 ALTER TABLE tableName DROP PARTITION partionName UPDATE GLOBAL INDEXES; --清数据 ALTER TABLE tabl ...

  6. 1267 老鼠的旅行 2012年CCC加拿大高中生信息学奥赛

    1267 老鼠的旅行  2012年CCC加拿大高中生信息学奥赛 题目描述 Description You are a mouse that lives in a cage in a large lab ...

  7. LVS中文站点

    http://blog.csdn.net/turkeyzhou/article/details/16980161 http://zh.linuxvirtualserver.org/

  8. jq超简单的流式布局,代码简单,容易修改

    1.看看效果吧! 2.html代码index.html <!DOCTYPE html> <html lang="en"> <head> < ...

  9. 3.1-HDLC/PPP

    同步串行链路(Serail Point-to-Point Link)的封装 3.1-HDLC/PPP     高级数据链路控制HDLC(High-Level Data Link Control):   ...

  10. PowerDesigner12.5和15.1的破解

    不要相信网上盛传的powerdesigner的 license key注冊码,试了好多都无论用,不废话了,直接献上PowerDesigner12.5.PowerDesigner15.1的破解方法. P ...