题目:

洛谷2257

预备知识:莫比乌斯定理(懵逼乌斯定理)

\(\mu*1=\epsilon\)(证bu明hui略zheng)

其中(我校学长把\(\epsilon(x)\)叫单位函数但是为什么我没百度到qwq)

\[\epsilon(x)=\begin{cases}1 & x=1\\
0 & x\neq1\\
\end{cases}\]

\[\mu(x)=\begin{cases}1 & x=1\\
0 & 存在质数p使p^2|x\\
(-1)^k & k是x质因数的个数 \end{cases}\]

那个\(*\)是迪利克雷卷积,换成人话就是

\[\epsilon(n)=\sum_{d|n}\mu(d)
\]

我觉得用这种方式理解莫比乌斯定理比设两个函数容易

分析:

这题莫比乌斯定理的经典用例。

本文中默认\(N>M\)

默认\(p\)是质数

显然如果\(gcd(i,j)=p\),那么\(gcd(\frac{i}{p}, \frac{j}{p})=1\)

那么题目所求可以转换成下面的式子

\[\sum_{p}^N\sum_i^{N/p}\sum_j^{M/p}\epsilon(gcd(i,j))
\]

其中(我校学长把这个叫单位函数但是我没百度到qwq)

\[\epsilon(x)=\begin{cases}1 & x=1\\
0 & x\neq1\\
\end{cases}\]

根据莫比乌斯反演定理,上面的式子就可以变成

\[\sum_{p=2}^N\sum_i^{N/p}\sum_j^{M/p}\sum_{d|gcd(i,j)}\mu(d)
\]

改变一下枚举顺序,用\(d·i\)表示原来的\(i\),\(d·j\)表示原来的\(j\),得到

\[\sum_{p=2}^N\sum_d^{N/p}\sum_i^{N/pd}\sum_j^{M/pd}\mu(d)
\]

可以发现\(\mu(d)\)和\(i\)、\(j\)没半毛钱关系,仅仅是乘上\(i\)和\(j\)可以取的值的数量

也就是

\[\sum_{p=2}^N\sum_d^{N/p}\mu(d)*\lfloor\frac{N}{pd}\rfloor*\lfloor\frac{M}{pd}\rfloor
\]

令\(T=pd\),枚举T,上式可变成

\[\sum_T^N\sum_{p|T}\mu(\frac{T}{p})*\lfloor\frac{N}{T}\rfloor*\lfloor\frac{M}{T}\rfloor
\]

设$$g(x)=\sum_{p|x}\mu(\frac{x}{p})$$

则上式就是

\[\sum_T^N\lfloor\frac{N}{T}\rfloor*\lfloor\frac{M}{T}\rfloor*g(T)
\]

现在考虑如何求\(g(x)\)这个函数。

首先,对于任意质数\(p\),显然\(g(p)=\mu(1)=1\)

然后,对于任意合数\(n=kp_0\)(\(p_0\)是质数)\(g(n)\)中显然存在\(\mu(\frac{n}{p_0})\)也就是\(\mu(k)\)这一项

当\({p_0}|k\),也就是\(p_0^2|n\),对于任意\(p|k\)且\(p\neq p_0\),\(\mu(\frac{n}{p})\)中一定有\(p_0^2\)这个质数平方因子。根据\(\mu(x)\)的定义,\(\mu(\frac{n}{p})=0\)

所以此时\(g(n)=\mu(k)\)

当\(p_0\)不能整除\(k\),对于任意\(p|k\),\(\mu(\frac{n}{p})\)比\(\mu(\frac{k}{p})\)多了\(p_0\)这个质因子。根据\(\mu(x)\)的定义\(\mu(\frac{n}{p})=-\mu(\frac{k}{p})\)

所以此时\(g(n)=-g(k)+\mu(k)\)

总结一下

\[g(x)=\begin{cases}1 & x是质数\\
\mu(k) & x=kp且p能整除k\\
-g(k)+\mu(k) & x=kp且p不能整除k
\end{cases}\]

显然这个函数可以用线性筛求

\[\sum_T^N\lfloor\frac{N}{T}\rfloor*\lfloor\frac{M}{T}\rfloor*g(T)
\]

再来看这个式子,既然\(g(T)\)可以直接预处理并\(O(1)\)查询,那么计算这个式子的时间复杂度就是枚举\(T\)的复杂度\(O(N)\)

我会做啦!

别急,这题还有\(T\)组询问,所以复杂度是O(不可过)\(O(NT)\),这个过不了。

但是我们可以发现\(\lfloor\frac{N}{T}\rfloor*\lfloor\frac{M}{T}\rfloor\)在\(T\)的一段区间内是不变的,所以可以给\(g(T)\)算个前缀和然后分段计算,据说复杂度是\(O(\sqrt N T)\)的(我不会证),这样就可以过了

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std; namespace zyt
{
typedef long long ll;
const int N = 1e7 + 10, M = 7e5;
bool mark[N];
int cnt, prime[M], phi[N], mu[N];
ll g[N];
void init()
{
mu[1] = 1;
for (int i = 2; i < N; i++)
{
if (!mark[i])
prime[cnt++] = i, mu[i] = -1, g[i] = 1;
for (int j = 0; j < cnt && (ll)i * prime[j] < N; j++)
{
int k = i * prime[j];
mark[k] = true;
if (i % prime[j] == 0)
{
mu[k] = 0;
g[k] = mu[i];
break;
}
else
{
mu[k] = -mu[i];
g[k] = -g[i] + mu[i];
}
}
}
for (int i = 2; i < N; i++)
g[i] += g[i - 1];
}
void work()
{
int T;
init();
scanf("%d", &T);
while (T--)
{
int n, m, pos = cnt;
ll ans = 0;
scanf("%d%d", &n, &m);
if (n > m)
swap(n, m);
for (int t = 1; t <= n;)
{
int tmp = min(n / (n / t), m / (m / t));
ans += (g[tmp] - g[t - 1]) * (n / t) * (m / t);
t = tmp + 1;
}
printf("%lld\n", ans);
}
}
}
int main()
{
zyt::work();
return 0;
}

【洛谷2257/BZOJ2820】YY的GCD(数论/莫比乌斯函数)的更多相关文章

  1. 【洛谷2257】YY的GCD(莫比乌斯反演)

    点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^MIsPrime(gcd(x,y))\). 莫比乌斯反演 听说此题是莫比乌斯反演入门题? 一些定义 首先,我们可以定义\(f ...

  2. BZOJ2820 YY的GCD 【莫比乌斯反演】

    BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...

  3. LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)

    LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...

  4. 洛谷 P2257 【YY的GCD】

    这道题还是和上一道[ZAP]有那么一点点的相似哈 题目大意 给定N, M,求1<=x<=N, 1<=y<=M且\(gcd(x, y)\)为质数的(x, y)有多少对 如果对莫比 ...

  5. 【洛谷P2257】YY的GCD

    题目大意:有 \(T\) 个询问,每个询问给定 \(N, M\),求 \(1\le x\le N, 1\le y\le M\) 且 \(gcd(x, y)\) 为质数的 \((x, y)\) 有多少对 ...

  6. BZOJ 2820 YY的GCD(莫比乌斯函数)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2820 题意:给定n,m.求1<=x<=n, 1<=y<=m且Gc ...

  7. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  8. [BZOJ2820]YY的GCD

    [BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

  9. BZOJ2820 YY的GCD 莫比乌斯+系数前缀和

    /** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...

随机推荐

  1. PAT 1123 Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  2. jetty添加容器容器提供包

    在tomcat的使用中,我们常常会吧容器提供的包放入:TOMCAT_HOME\lib下, 比如mysql-connection-java-version.jar 在使用jetty容器的时候,若要让容器 ...

  3. 【01】CSS3 Gradient 分为 linear-gradient(线性渐变)和 radial-gradient(径 向渐变)(转)

    CSS3 Gradient 分为 linear-gradient(线性渐变)和 radial-gradient(径 向渐变).而我们今天主要是针对线性渐变来剖析其具体的用法.为了更好的应用 CSS3 ...

  4. springboot项目--传入参数校验-----SpringBoot开发详解(五)--Controller接收参数以及参数校验----https://blog.csdn.net/qq_31001665/article/details/71075743

    https://blog.csdn.net/qq_31001665/article/details/71075743 springboot项目--传入参数校验-----SpringBoot开发详解(五 ...

  5. MT6753平台一项目不同手机最低亮度存偏差问题分析过程

    现象: MT6753平台一项目不同手机将背光高度调到最低,最低亮度存偏差问题,有一些亮,有一些暗. 现象较明显. 分析过程: 第一天: 和TCL屏天一起验证,有以下结论: 1.TCL和YASSI模组, ...

  6. git常见操作---由简入深

    常用命令 常用指令 ls 显示文件或目录 -l 列出文件详细信息l(list) -a 列出当前目录下所有文件及目录,包括隐藏的a(all) mkdir 创建目录 -p 创建目录,若无父目录,则创建p( ...

  7. 用xshell5连接虚拟机,显示Could not connect to '192.168.3.128' (port 22): Connection failed.

    原因:虚拟机上没有安装或者没有启动ssh 解决: 1.安装sshserver sudo apt-get install openssh-server 2.启动ssh服务 sudo service ss ...

  8. org.apache.maven.archiver.MavenArchiver.getManifest(org.apache.maven.project.MavenProject, org.apach

    https://www.cnblogs.com/wxymg/p/8630471.html

  9. java 中public 类

    java 中的文件名是以这个文件里面的public 的那个类命名的(也就是说文件名和这个文件里面的那个public 属性的class 名称一样), 同一个文件中不能放多个(超过2个)的pulic 类. ...

  10. MVC路由中特殊URL匹配规则

    *匹配*用来匹配URL剩余部分 贪婪匹配规则贪婪匹配会找到最后一个符合条件的“字面量”为止