51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下
首先推一下式子
\]
\]
\]
\]
然后可以向两个方向推:莫比乌斯或者欧拉
首先推欧拉函数的:
为什么转成乘二加一的形式?考虑矩阵。\( \sum_{i=1}{n}\sum_{j=1}{n}[gcd(i,j)1] \)的形式相当于把除了\( ij \)的数对\( (i,j) \)都算了两遍,所以乘二,这时只用算一遍的\( ij \)的数对也被算了两遍,这些数对中对答案有贡献的只有\( gcd(1,1)1 \)所以减去一
\]
\]
转成这种形式就可以分块+杜教筛做了
拒绝算时间复杂度(。
然后莫比乌斯反演(不想卡常所以没写代码,最后应该带个ln:
\]
\]
欧拉函数的代码,因为时间很充足,所以为了方便全部用了long long
#include<iostream>
#include<cstdio>
using namespace std;
const long long N=1000005,m=1000000,mod=1e9+7,inv2=500000004;
long long n,ans,q[N],tot,phi[N],ha[N];
bool v[N];
long long wk(long long x)
{
if(x>=mod)
x-=mod;
return x%mod*(x+1)%mod*inv2%mod;
}
long long slv(long long x)
{
if(x<=m)
return phi[x];
if(ha[n/x])
return ha[n/x];
long long re=wk(x);
for(long long i=2,la;i<=x;i=la+1)
{
la=x/(x/i);
re=(re-(la-i+1)%mod*slv(x/i)%mod)%mod;
}
return ha[n/x]=re;
}
int main()
{
phi[1]=1;
for(long long i=2;i<=m;i++)
{
if(!v[i])
{
q[++tot]=i;
phi[i]=i-1;
}
for(long long j=1;j<=tot&&q[j]%mod*i<=m;j++)
{
long long k=i%mod*q[j];
v[k]=1;
if(i%q[j]==0)
{
phi[k]=phi[i]%mod*q[j];
break;
}
phi[k]=phi[i]%mod*(q[j]-1);
}
}
for(long long i=1;i<=m;i++)
phi[i]=(phi[i]+phi[i-1])%mod;
scanf("%lld",&n);
for(long long i=1,la;i<=n;i=la+1)
{
la=n/(n/i);
ans=(ans+(wk(la)-wk(i-1))%mod*slv(n/i)%mod)%mod;
}
printf("%lld\n",((ans%mod*2-wk(n))%mod+mod)%mod);
return 0;
}
51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】的更多相关文章
- 51nod 1040 最大公约数之和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...
- 【BZOJ4805】欧拉函数求和(杜教筛)
[BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...
- 51nod1040 最大公约数之和,欧拉函数或积性函数
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- 51nod 1237 最大公约数之和 V3(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...
- 51nod 1237 最大公约数之和 V3
求∑1<=i<=n∑1<=j<=ngcd(i,j) % P P = 10^9 + 7 2 <= n <= 10^10 这道题,明显就是杜教筛 推一下公式: 利用∑d ...
- 51nod 1040最大公约数和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 给出一个n,求1-n这n个数,同n的最大公约数 ...
- 51nod 1040 最大公约数的和 欧拉函数
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 给出一个n,求1-n这n个数,同n的最大公约数 ...
- 【51Nod 1363】最小公倍数之和(欧拉函数)
题面 传送门 题解 拿到式子的第一步就是推倒 \[ \begin{align} \sum_{i=1}^nlcm(n,i) &=\sum_{i=1}^n\frac{in}{\gcd(i,n)}\ ...
随机推荐
- oc温习五:字符串
/** substringFromIndex: --从第from位数 开始截取字符串 */ NSString *str = @"asdfghjkzxcbnm"; NSString ...
- 前端学习之- Ajax
Ajax:页面不做刷新,直接将数据悄悄提交到后台,然后通过回调函数处理返回结果. $.Ajax({ # 提交到后台 url:'/host', # 提交到哪里 type:'POST' # 提交方式 da ...
- python学习之-- socketserver模块
socketserver 模块简化了网络服务器的编写,主要实现并发的处理. 主要有4个类:这4个类是同步进行处理的,另外通过ForkingMixIn和ThreadingMixIn类来支持异步.sock ...
- hihocoder 1873 ACM-ICPC北京赛区2018重现赛 D Frog and Portal
http://hihocoder.com/problemset/problem/1873 时间限制:1000ms 单点时限:1000ms 内存限制:512MB 描述 A small frog want ...
- CEF3研究(一)
一.基本概览 C++ WrapperC++Wrapper(包装类)就是将C结构包装C++类. 这是C/C++API转换层通过translator tool自动产生的. 进程 CEF3用多进程运 ...
- 【安卓笔记】抽屉式布局----DrawerLayout
效果例如以下: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2hkamo=/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...
- Yii2 mongodb 扩展的where的条件增加大于 小于号
1. mongodb的where中有比較丰富的 条件.例如以下: static $builders = [ 'NOT' => 'buildNotCondition', 'AND' => ' ...
- 【iOS系列】-textView的非常规使用
[iOS系列]-textView的非常规使用 文本框坐标设置一点距离 //文本框,左边间距 textView.leftView = [[UIView alloc] initWithFrame:CGRe ...
- EJB学习笔记六(EJB中的拦截器)
1.前言 听到拦截器,预计都不陌生,尤其是在Servlet规范中,充分应用了拦截器的概念.EJB3也提供了拦截器的支持,本质上是轻量级的AOP实现.拦截器能够将多个业务方法中的通用逻辑从业务方法中抽 ...
- 密码过期导致Oracle process耗尽问题
oracle忽然连不上! 大致是报这样的错: ORA-12516: TNS: 监听程序找不到符合协议堆栈要求的可用处理程序 ORA-12520: TNS: 监听程序无法为请求的服务器类型找到可用的处理 ...