Placing Lampposts

传送门:https://vjudge.net/problem/UVA-10859

题目大意:给你一片森林,要求你在一些节点上放上灯,一个点放灯能照亮与之相连的所有的边。问你最小化防止的灯数,在灯数相同的条件下,最大化两个点都有灯的边数。
题解:

  首先有一个套路,也是做了此题才知道的,很神奇啊。最小化灯的数量,我们设灯数为V1,把“最大化两个点都有灯的边数”转化为“最下化只有一个点有灯的边数”,设为V2,那么我们设Val=Eps*V1+V2。这样只要DP一个值就可以了。Eps设成一个足够大的值,保证Eps>sum{V2}。此题姑且设为2000。
  然后我们就可以DP了。树上求解最优解,此题为森林,转化为每棵树的答案相加就可以了。那么怎么DP呢?
  设状态DP[i]代表i节点与它的子树以及连向父亲的那一条边的最小的Val。每一个节点有放灯与不放灯两种状态,但是我们发现,父亲放不放灯会影响儿子放不放灯,那么我们再加上一维的状态:dp[i][0/1]代表代表i节点与它的子树以及连向父亲的那一条边的最小的Val,j=1为父亲放灯,j=0代表父亲不放灯。
考虑两种方案:
1.  i放灯:i放灯的话,对于其他的没有什么要求,所以dp[i][j]+=dp[son][1],dp[i][j]+=Eps。如果当前j==0,并且不是根节点,那么dp[i][j]++,因为到父亲的那一条边只有1个灯。
2.  i不放灯:i不放灯,转移就有限制条件了,必须父亲放灯,或者i为根节点,dp[i][1]+=dp[son][0],如果i不是根节点,那么还要++,同样的因为到父亲的那一条边只有1个灯。
  然后一边dfs一边DP就可以了。注意状态转移是错综复杂的,并不是单一的0->1或0->0,具体顺序见代码。
  条件1可以更新j=1和0的情况;条件2只能更新j=1的情况,但是在根节点也可以更新j=0的情况。

 #include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define RG register
#define LL long long
#define fre(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
const int MAXN=,Eps=;
int n,num,m,Case,ans;
int dp[MAXN][];
int head[MAXN],to[MAXN],Next[MAXN];
bool vis[MAXN];
void dfs(int u,int fa)
{
vis[u]=;
int sum1=,sum2=Eps;
for(int i=head[u];i;i=Next[i])
{
int v=to[i];
if(v==fa)continue;
dfs(v,u);
sum1+=dp[v][];//不放灯
sum2+=dp[v][];//放灯
}
if(fa!=)sum1++;
dp[u][]=sum1;
dp[u][]=min(dp[u][],sum2);//与放灯的再比较一下。
dp[u][]=sum2;
if(fa!=) dp[u][]++;
if(fa==)
dp[u][]=min(dp[u][],sum1);
}
void add(int f,int t)
{
Next[++num]=head[f];
to[num]=t;
head[f]=num;
}
int main()
{
scanf("%d",&Case);
while(Case--)
{
scanf("%d%d",&n,&m);
num=;
memset(head,,sizeof head);
memset(vis,,sizeof vis);
memset(dp,,sizeof dp);
for(int i=,a,b;i<=m;i++)
{
scanf("%d%d",&a,&b);
a++,b++;
add(a,b); add(b,a);
}
ans=;
for(int i=;i<=n;i++)
if(!vis[i])
{
dfs(i,);
ans+=min(dp[i][],dp[i][]);
}
printf("%d %d %d\n",ans/Eps,m-ans%Eps,ans%Eps);
}
return ;
}

UVA - 10859 Placing Lampposts 放置街灯的更多相关文章

  1. UVA 10859 - Placing Lampposts 树形DP、取双优值

                              Placing Lampposts As a part of the mission ‘Beautification of Dhaka City’, ...

  2. UVa 10859 Placing Lampposts

    这种深层递归的题还是要多多体会,只看一遍是不够的 题意:有一个森林,在若干个节点处放一盏灯,灯能照亮与节点邻接的边.要求:符合要求的放置的灯最少为多少,在灯数最少的前提下,一条边同时被两盏灯照亮的边数 ...

  3. UVa 10859 - Placing Lampposts 树形DP 难度: 2

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  4. uva 10859 - Placing Lampposts dp

    题意: 有n个节点,m条边,无向无环图,求最少点覆盖,并且在同样点数下保证被覆盖两次的变最多 分析: 1.统一化目标,本题需要优化目标有两个,一个最小灯数a,一个最大双覆盖边数b,一大一小,应该归一成 ...

  5. UVA 10859 Placing Lamppost 树形DP+二目标最优解的求解方案

    题意:给定一个无向,无环,无多重边,要求找出最少的若干点,使得,每条边之中至少有一个点上有街灯.在满足上述条件的时候将还需要满足让两个点被选择的边的数量尽量多. 题解: 对于如何求解最小的节点数目这点 ...

  6. UVaLive 10859 Placing Lampposts (树形DP)

    题意:给定一个无向无环图,要在一些顶点上放灯使得每条边都能被照亮,问灯的最少数,并且被两盏灯照亮边数尽量多. 析:其实就是一个森林,由于是独立的,所以我们可以单独来看每棵树,dp[i][0] 表示不在 ...

  7. 10_放置街灯(Placing Lampposts,UVa 10859)

    问题来源:刘汝佳<算法竞赛入门经典--训练指南> P70 例题30: 问题描述:有给你一个n个点m条边(m<n<=1000)的无向无环图,在尽量少的节点上放灯,使得所有边都被照 ...

  8. UVa10895 Placing Lampposts

    UVa10895 Placing Lampposts 链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34290 [思路] ...

  9. UVa10859 放置街灯

    Placing Lampposts As a part of the mission �Beautification of Dhaka City�, the government has decide ...

随机推荐

  1. ACM-ICPC 2018 南京赛区网络预赛 L && BZOJ 2763 分层最短路

    https://nanti.jisuanke.com/t/31001 题意 可以把k条边的权值变为0,求s到t的最短路 解析  分层最短路  我们建立k+1层图 层与层之间边权为0,i 向 i+1层转 ...

  2. ubuntu-12.04下安装postgresql

    2013-10-01 20:42:57|    moniter参考资料:Ubuntu 12.04下PostgreSQL-9.1安装与配置详解(在线安装)一.安装postgresqlbamboo@bam ...

  3. [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 673  Solved: 261[Submit][ ...

  4. Java面试题总结(一)---Java基础

    Java面试题总结(一)---Java基础 1.面向对象的特征有哪些? 答:面向对象的特征主要有以下几个: 1)抽象:抽象就是忽略一个主题中与当前目标无关的那些方面,以便更充分地注意与当前目标有关的方 ...

  5. ArcGIS engine中Display类库——Display

    转自原文  ArcGIS engine中Display类库——Display Display类库包括了用于显示GIS数据的对象.除了负责实际输出图像的主要显示对象(display object)外,这 ...

  6. 关于MySQL的boolean和tinyint(1)

    原文:http://blog.csdn.net/woshixuye/article/details/7089508 MySQL保存boolean值时用1代表TRUE,0代表FALSE.boolean在 ...

  7. Python的字符串和列表和字典的方法/函数

    字符串 S.find()#可指定范围查找字串,返回索引值,否则返回-1 S.index()#同find,只是找不到的之后返回异常 S.count()#返回找到字串的个数 S.lower()#转小写 S ...

  8. KindEditor使用过程中,用JQ提交表单时,获取不到编辑器的内容

    首先要说明的是.在使用提交button直接提交时.编辑器的内容是能够正常获取的,而使用 jq或js ,如$("#form").submit(),提交时,则编辑器的内容是无法获取的. ...

  9. 理解Paxos Made Practical

    Paxos Made Practical 当一个组中一台机器提出一个值时,其它成员机器通过PAXOS算法在这个值上达成一致. Paxos分三个阶段. 第一阶段: 提出者会选出一个提议编号n(n> ...

  10. 扩展HtmlHelper

    eg3:扩展HtmlHelper                                扩展方法类 1 public static class HtmlExtension 2 { 3 /// ...