传送门

鉴于志愿者招募那题我是用网络流写的所以这里还是写一下单纯形好了……

就是要我们求这么个线性规划(\(d_{ij}\)表示第\(i\)种志愿者在第\(j\)天能不能服务,\(x_i\)表示第\(i\)种志愿者选的数量,\(c_i\)表示第\(i\)种志愿者的价格,\(k_j\)表示第\(j\)天需要的志愿者数目,\(n\)表示志愿者总数,\(m\)表示天数)

\[Min\sum_{i=1}^nc_ix_i
\]

\[\sum_{i=1}^nd_{ij}x_i\geq k_j
\]

\[x_i\geq 0
\]

这个线性规划是求最小值,把它对偶一下转为求最大值(令\(y_i\)表示对偶之后的第\(i\)个式子)

\[Max\sum_{j=1}^m k_jy_j
\]

\[\sum_{j=1}^md_{ij}y_j\leq c_i
\]

\[y_j\geq 0
\]

那么直接单纯形求解即可

ps:然而论文里看到这题实际上用单纯形是错的,因为原题可以保证最优解是整数然而这题不行,比方说有三种志愿者分别是时间\([1,1],[3,3]\),代价\(1\),时间\([1,1],[2,2]\),代价\(1\),时间\([2,2],[3,3]\),代价\(1\),最优解是三个志愿者各招募\(0.5\)个,然而这是不可能的

pps:有些大佬似乎用费用流写的……不过我暂时还不会线性规划的网络流建图所以看不太懂……

//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 1e18
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=10005,M=1005;const double eps=1e-8;
double a[N][M];int n,m,k,l,r;
void pivot(int l,int e){
double t=a[l][e];a[l][e]=1;fp(i,0,m)a[l][i]/=t;
fp(i,0,n)if(i!=l&&fabs(a[i][e])>eps){
t=a[i][e],a[i][e]=0;
fp(j,0,m)a[i][j]-=t*a[l][j];
}
}
void simplex(){
while(true){
int l=0,e=0;double mn=inf;
fp(i,1,m)if(a[0][i]>eps){e=i;break;}if(!e)return;
fp(i,1,n)if(a[i][e]>eps&&a[i][0]/a[i][e]<mn)mn=a[i][0]/a[i][e],l=i;
pivot(l,e);
}
}
int main(){
// freopen("testdata.in","r",stdin);
m=read(),n=read();fp(i,1,m)a[0][i]=read();
fp(i,1,n){
k=read();
while(k--){
l=read(),r=read();fp(j,l,r)++a[i][j];
}a[i][0]=read();
}simplex();printf("%.0lf\n",-a[0][0]);return 0;
}

bzoj3265: 志愿者招募加强版(线性规划+单纯形法)的更多相关文章

  1. BZOJ3265: 志愿者招募加强版(线性规划)

    Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 809  Solved: 417[Submit][Status][Discuss] Descriptio ...

  2. 突然想看单纯形 BZOJ3265 志愿者招募加强版

    本来的版本是可以差分之后建图利用网络流,这个题是板子题,就当存个板子,嘻嘻嘻 讲解可以到卿学姐的算法讲堂 https://www.bilibili.com/video/av7847726?from=s ...

  3. BZOJ 3265 志愿者招募加强版(单纯形)

    3265: 志愿者招募加强版 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 848  Solved: 436[Submit][Status][Disc ...

  4. 【BZOJ1061/3265】[Noi2008]志愿者招募/志愿者招募加强版 单纯形法

    [BZOJ1061][Noi2008]志愿者招募 Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募 ...

  5. 【BZOJ 1061】 1061: [Noi2008]志愿者招募 (线性规划与网络流)**

    1061: [Noi2008]志愿者招募 Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短 ...

  6. BZOJ 3265: 志愿者招募加强版 [单纯形法]

    传送门 一个人多段区间,一样.... 不过国家队论文上说这道题好像不能保证整数解.... #include <iostream> #include <cstdio> #incl ...

  7. BZOJ.3265.志愿者招募加强版(费用流SPFA)

    题目链接 见上题. 每类志愿者可能是若干段,不满足那个...全幺模矩阵(全单位模矩阵)的条件,所以线性规划可能存在非整数解. 于是就可以用费用流水过去顺便拿个rank2 233. //20704kb ...

  8. BZOJ 1061 志愿者招募 最小费用流&&线性规划建模

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1061 题目大意: 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主 ...

  9. BZOJ 1061: [Noi2008]志愿者招募(线性规划与网络流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1061 题意: 思路: 直接放上大神的建模过程!!!(https://www.byvoid.com/z ...

随机推荐

  1. ArrayList和LinkedList区别(蚂蚁金服面试题)

    1. 是否保证线程安全: ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全: 2. 底层数据结构: Arraylist 底层使用的是Object数组:LinkedLis ...

  2. 北京交大yum

    [base] name=CentOS-$releasever - Base #mirrorlist=http://mirrorlist.centos.org/?release=$releasever& ...

  3. 个人网站开发***云服务器+Linux+域名***

    作为一个改变世界的程序猿,我们不应该只会埋头写程序修bug还得会点别的, 当然如果要是自己搞个网站玩玩,既可以锻炼技术,没事也可以和圈外的朋友吹吹 牛.因为水平有限,就弄一些最基础的看看喽,不喜勿喷. ...

  4. Office WORD EXCEL批量查找和替换技巧实例

    1 删除多余的空行 如果是在WORD中,则查找^p^p替换为^p.   如果是在EXCEL里,则为全部选中,然后点击编辑,定位,定位条件,空值. 将全部选中空白的行,如图所示 再次点击编辑,删除,删除 ...

  5. jsoncpp的api简要说明

    1  jsoncpp的api简要说明 1,解析(json字符串转为对象) std::string strDataJson; Json::Reader JReader; Json::Value JObj ...

  6. centos 安装mysql时错误unknown variable &#39;defaults-file=/opt/redmine-2.6.0-2/mysql/my.cnf&#39;

    找到my.cnf所在目录.运行 chmod 664 my.cnf,再启动mysql成功

  7. Xcode中使用git

    项目中添加git 也可在开始新建项目时勾选git,这是针对开始没有勾选git的情况 打开终端 cd 项目文件目录 //初始化一个代码仓库, git init //将当前目录及子目录中的文件标记为要添加 ...

  8. PL/SQL Developer导入导出Oracle数据库方法

    前一篇博客介绍了Navicat工具备份Oracle的方法.这篇博客介绍一下使用PL/SQL Developer工具导入导出Oracle数据库的方法. PL/SQL Developer是Oracle数据 ...

  9. NYOJ110 剑客决斗

    剑客决斗 来源:Polish Olympiad in Informatics(波兰信息学奥林匹克竞赛) 时间限制:5000 ms  |  内存限制:65535 KB 难度:5   描述 在路易十三和红 ...

  10. form标签中id和name属性的区别

    HTML元素的ID和Name属性的区别 一直认为ID和NAME是一样的,两个又可以一起出现,甚是疑惑. 今天BAIDU了一下,才发现里面大有文章.发出来研究研究: 最classical的答案:ID就像 ...