此系列将会每日持续更新,欢迎关注

线性回归(linear regression)的TensorFlow实现

#这里是基于python 3.7版本的TensorFlow

TensorFlow是一个机器学习的利器,打包了众多的机器学习中的模型以及各种数学上的处理

因此利用TensorFlow来学习机器学习能起到事半功倍的效果。

以下代码即是线性回归的实现(实现对函数  y = 0.1 x + 0.3  的回归)代码内给出详细注释便于理解

import tensorflow as tf

import numpy as np

#生成原始数据 begin

x_data = np.random.rand(100).astype(np.float32)       #利用rand(100)生成一个一行100列的矩阵,

y_data = x_data*0.1 + 0.3                   #astype(np.float32)是由于TensorFlow处理的数据类型通常为此类型

#生成原始数据 end

### 构建tensorflow的结构 start ###
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))  #权重,即为 y = ax + b 中的 a 
biases = tf.Variable(tf.zeros([1]))                #偏置值,即为 y = ax + b 中的 b


y = Weights*x_data + biases


loss = tf.reduce_mean(tf.square(y-y_data))          #reduce_mean意为取y-y_data的平方的均值
optimizer = tf.train.GradientDescentOptimizer(0.5)      #这里采用最简单的梯度下降法来实现回归,梯度下降法将会在以后的博客中利用octave梳理内部细节的实现

                                      #简单来讲,梯度下降就是:1.求导 2.向导数为零的点靠拢。

                                    #这里的0.5表示学习率,通俗来说就是向导数为零的点靠拢的速度。
train = optimizer.minimize(loss)                #使得误差最小
### create tensorflow structure end ###


sess = tf.Session()
init = tf.global_variables_initializer()    #将tf.global_variables_initializer(),即全局变量初始化写为init,这样后面就可以通过sess.run(init)来进行初始化
sess.run(init)                    #这一步才真正意义上初始化!


for step in range(201):
  sess.run(train)                  #训练一次
  if step % 10 == 0:
  print(step, sess.run(Weights), sess.run(biases))#每10次输出一下结果,进行观察

 

  这里是我的输出结果(因rand不同程序运行多次的结果可能各不相同)

================ RESTART: D:/TensorFlow/linear regression.py ================
0 [0.36862874] [0.21253814]
20 [0.17672797] [0.25930387]
40 [0.12394582] [0.28729928]
60 [0.10747318] [0.29603627]
80 [0.10233228] [0.29876298]
100 [0.10072788] [0.29961395]
120 [0.10022715] [0.29987952]
140 [0.10007092] [0.2999624]
160 [0.10002212] [0.29998827]
180 [0.10000691] [0.29999635]
200 [0.10000216] [0.29999888]

几点要点补充:

1. TensorFlow中的一些语法会有一些反直觉:当你要声明一个变量时,必须用tf.Variable来声明这个变量,

而你想要输出某个数据时,例如Weights,必须采用print(sess.run(Weights))才可将其输出

2. Session 是 Tensorflow 为了控制,和输出文件的执行的语句. 运行 session.run() 可以获得你要得知的运算结果, 或者是你所要运算的部分.

例如:

import tensorflow as tf
# create two matrixes matrix1 = tf.constant([[3,3]])
matrix2 = tf.constant([[2],
[2]])
product = tf.matmul(matrix1,matrix2)
sess = tf.Session()  result = sess.run(product) print(result) sess.close()

输出结果为[[12]]。

TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现的更多相关文章

  1. 深度学习 Deep Learning UFLDL 最新 Tutorial 学习笔记 1:Linear Regression

    1 前言 Andrew Ng的UFLDL在2014年9月底更新了. 对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial添加了Conv ...

  2. 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression

    机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...

  3. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  4. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  5. ML 线性回归Linear Regression

    线性回归 Linear Regression MOOC机器学习课程学习笔记 1 单变量线性回归Linear Regression with One Variable 1.1 模型表达Model Rep ...

  6. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

  7. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  8. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  9. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

随机推荐

  1. BNU 13064 Dice (I) 前缀和优化DP

    Dice (I)   You have N dices; each of them has K faces numbered from 1 to K. Now you have arranged th ...

  2. oc70--NSArray1

    // // main.m // NSArray是不可变的,一旦初始化完毕,就不能添加和删除了.类似于NSString和NSMutilString. #import <Foundation/Fou ...

  3. codeforce 1073E. Segment Sum

    看到这个就是数位DP了,然而细节极多,对于i=1状态直接判了,还有最后一位直接算了 设f[i][zt][0/1]表示枚举到第i位,用了那些数字,是否有前导0(前导0不计入数字,否则就不知道后面有没有0 ...

  4. android apk 防止反编译技术第三篇-加密

    上一篇我们讲了apk防止反编译技术中的加壳技术,如果有不明白的可以查看我的上一篇博客http://my.oschina.net/u/2323218/blog/393372.接下来我们将介绍另一种防止a ...

  5. Java 集合列表排序

    主要是实现Comparator接口 数组排序: //按最后更新时间降序排列,时间相同的按照文件名生序排列 Arrays.sort(files, new Comparator<File>() ...

  6. 对腾讯云服务器linux系统进行分区格式化操作

  7. 直接使用FileSystem以标准输出格式显示hadoop文件系统中的文件

    package com.yoyosys.cebbank.bdap.service.mr; import java.io.IOException; import java.io.InputStream; ...

  8. ubuntu下如何查看和设置分辨率 (转载)

    转自:http://blog.csdn.net/jcgu/article/details/8650423 在ubuntu下可以使用xrandr来设置自己需要的分辨率.大致步骤如下: 1.使用xrand ...

  9. P2871 [USACO07DEC]手链Charm Bracelet

    题目描述 Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like t ...

  10. 国内外知名IT科技博客

    国内 1.36氪(www.36kr.com): 目前国内做的最风生水起的科技博客,以介绍国内外互联网创业新闻为主的博客网站,自己建立有36Tree互联网创业融投资社区.36氪的名字源于元素周期 表的第 ...