[bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理
bzoj-3622 已经没有什么好害怕的了
题目大意:
数据范围:$1\le n \le 2000$ , $0\le k\le n$。
想法:
首先,不难求出药片比糖果小的组数。
紧接着,我开始的想法是
$f_{(i,j)}$表示前$i$个糖果中,满足糖果比药片大的组数是$j$的方案数。
进而发现需要将两个数组排序。
到这里一切都很正常,但是我们发现了一个问题:就是我在转移的时候,分两种情况讨论。第一种是当前糖果配对的药片比自己大,第二种是比自己小。
这样的话我需要乘上两个组合数。
但是我们仔细思考一下:如果这样转移的话,排序的意义(是的前面的区间不影响后面的区间)就失效了,我们发现这鬼东西是个有后效性的转移。
然后啊....通常我们遇到有后效性的$dp$怎么办呢?
这个后效性根本没有办法制约。
看了$cqzhangyu$的题解恍然大悟。
哦原来还可以容斥掉。
我们修改一下上面那个状态
$f_{(i,j)}$表示前$i$个糖果中,满足糖果比药片大的组数至少为$j$,且只考虑“糖果比药片大的糖果”的摆放情况的方案数。
这样的话我们就,暴力转移一下就行了。
就还是像上面一样分类讨论,但是如果是讨论比自己大的情况就直接加。
但是统计的时候需要乘上组合数,因为需要把比药片小的糖果的情况乘一下就好了嗷。
代码:
#include <bits/stdc++.h>
#define N 2010
using namespace std;
#define mod 1000000009
int a[N],b[N];
typedef long long ll;
ll f[N][N],fac[N],c[N][N];
ll ans=0;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int rd() {int x=0,f=1; char c=nc(); while(c<48) {if(c=='-') f=-1; c=nc();} while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x*f;}
int main()
{
int n=rd(),m=rd();
if((n+m) % 2) puts("0"),exit(0);
m=(n+m)/2;
fac[0]=1; for(int i=1;i<=n;i++) fac[i]=fac[i-1] * i % mod;
for(int i=1;i<=n;i++) a[i]=rd();
for(int i=1;i<=n;i++) b[i]=rd();
for(int i=0;i<=n;i++)
{
c[i][0]=1;
for(int j=1;j<=i;j++) c[i][j] = (c[i-1][j-1] + c[i-1][j]) % mod;
}
sort(a+1,a+n+1); sort(b+1,b+n+1);
f[0][0]=1;
for(int i=1;i<=n;i++)
{
int k;
for(k=1;k<=n && b[k] < a[i];k++);
k--; for(int j=1;j<=i;j++) f[i][j]=(f[i-1][j] + f[i-1][j-1] * max(k-j+1,0)) % mod;
f[i][0]=f[i-1][0];
}
ll tmp=1;
for(int i=m;i<=n;i++) f[n][i]=(f[n][i]*fac[n-i])%mod,ans=(ans + tmp*f[n][i]*c[i][m]%mod + mod) % mod,tmp*=(-1);
cout << (ans + mod) % mod << endl ;
return 0;
}
小结:做一个后效性的$dp$,另一种办法就是采用容斥原理。
[bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理的更多相关文章
- BZOJ3622 已经没有什么好害怕的了(动态规划+容斥原理)
显然可以转化为一个阶梯状01矩阵每行每列取一个使权值和为k的方案数.直接做不可做,考虑设f[i][j]为前i行权值和至少为j,即在其中固定了j行选1的方案数.设第i行从1~a[i]列都是1且a[i]+ ...
- 【BZOJ3622】已经没有什么好害怕的了(动态规划,容斥)
[BZOJ3622]已经没有什么好害怕的了(动态规划,容斥) 题面 BZOJ 题解 很明显的,这类问题是要从至少变成恰好的过程,直接容斥即可. 首先我们要求的是(糖果>药片)=(药片>糖果 ...
- bzoj3622已经没有什么好害怕的了
bzoj3622已经没有什么好害怕的了 题意: 给n个数Ai,n个数Bi,将Ai中的数与Bi中的数配对,求配对Ai比Bi大的比Bi比Ai大的恰好有k组的方案数.n,k≤2000 题解: 蒟蒻太弱了只能 ...
- [BZOJ3622]已经没有什么好害怕的了(容斥DP)
给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...
- BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】
题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...
- bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1033 Solved: 480[Submit][Status][ ...
- BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学
原文链接https://www.cnblogs.com/zhouzhendong/p/9276479.html 题目传送门 - BZOJ3622 题意 给定两个序列 $a,b$ ,各包含 $n$ 个数 ...
- BZOJ3622 已经没有什么好害怕的了
Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...
- 【BZOJ3622】已经没什么好害怕的了 容斥原理+dp
Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...
随机推荐
- 【Linux】用户与权限
追加用户组 groupadd 用户组名 追加新用户 useradd -d 指定用户目录 -s 指定用户使用shell -g 指定用户组 -p 指定用户密码 用户名 更改用户 添加用户到其他组 use ...
- (转)编写高质量的OC代码
点标记语法 属性和幂等方法(多次调用和一次调用返回的结果相同)使用点标记语法访问,其他的情况使用方括号标记语法. 良好的风格: view.backgroundColor = [UIColor or ...
- 算法学习记录-图——应用之拓扑排序(Topological Sort)
这一篇写有向无环图及其它的应用: 清楚概念: 有向无环图(DAG):一个无环的有向图.通俗的讲就是从一个点沿着有向边出发,无论怎么遍历都不会回到出发点上. 有向无环图是描述一项工程或者系统的进行过程的 ...
- css字体文本格式 鼠标样式
缩进 text-indent 属性规定文本块中首行文本的缩进.(允许使用负值.如果使用负值,那么首行会被缩进到左边.) length 定义固定的缩进.默认值:0.% 定义基于父元素宽度的百分比的缩进. ...
- 关于Linux下使用expdp和impdp命令对Oracle数据库进行导入和导出操作
说明:本次导入和导出采用expdp和impdp命令进行操作,这2个命令均需要在服务器端进行操作 http://www.cnblogs.com/huacw/p/3888807.html 一. 从O ...
- 关于网络IP地址的分类
一.IP地址的分类 众所周知,IP地址都是以点号.分为4段来表示.不同类的IP前几位的表示含义也不尽相同. 1.A类IP [网络地址] 第一位表示网络地址,且第一个字节的第一位必须以0开头.依据此原则 ...
- 【05】Number图解
[05]Number图解
- Oracle跟踪分析数据库启动的各个阶段
目录 启动到nomount状态 设置trace 启动数据库到mount状态并打开 查阅trace 查阅trace的另外方法 v$diag_info 视图 演示如下: 启动到nomount状态 SYS@ ...
- unittest的discover方法使用
使用unittest进行测试,如果是需要实现上百个测试用例,把它们全部写在一个test.py文件中,文件会越来越臃肿,后期维护页麻烦.此时可以将这些用例按照测试功能进行拆分,分散到不同的测试文件中. ...
- document.execCommand
document.execCommand 在firefox浏览器执行不好,但是在其他浏览器有时候使用会非常方便. 比如在input标签中使用: onkeyup="if(isNaN(value ...