题目背景

在双人对决的竞技性比赛,如乒乓球、羽毛球、国际象棋中,最常见的赛制是淘汰赛和循环赛。前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高。后者的特点是较为公平,偶然性较低,但比赛过程往往十分冗长。

本题中介绍的瑞士轮赛制,因最早使用于1895年在瑞士举办的国际象棋比赛而得名。它可以看作是淘汰赛与循环赛的折衷,既保证了比赛的稳定性,又能使赛程不至于过长。

题目描述

2*N 名编号为 1~2N 的选手共进行R 轮比赛。每轮比赛开始前,以及所有比赛结束后,都会按照总分从高到低对选手进行一次排名。选手的总分为第一轮开始前的初始分数加上已参加过的所有比赛的得分和。总分相同的,约定编号较小的选手排名靠前。

每轮比赛的对阵安排与该轮比赛开始前的排名有关:第1 名和第2 名、第 3 名和第 4名、……、第2K – 1 名和第 2K名、…… 、第2N – 1 名和第2N名,各进行一场比赛。每场比赛胜者得1 分,负者得 0 分。也就是说除了首轮以外,其它轮比赛的安排均不能事先确定,而是要取决于选手在之前比赛中的表现。

现给定每个选手的初始分数及其实力值,试计算在R 轮比赛过后,排名第 Q 的选手编号是多少。我们假设选手的实力值两两不同,且每场比赛中实力值较高的总能获胜。

输入输出格式

输入格式:

输入文件名为swiss.in 。

输入的第一行是三个正整数N、R 、Q,每两个数之间用一个空格隔开,表示有 2*N 名选手、R 轮比赛,以及我们关心的名次 Q。

第二行是2*N 个非负整数s1, s2, …, s2N,每两个数之间用一个空格隔开,其中 si 表示编号为i 的选手的初始分数。
第三行是2*N 个正整数w1 , w2 , …, w2N,每两个数之间用一个空格隔开,其中 wi 表示编号为i 的选手的实力值。

输出格式:

输出文件名为swiss.out。

输出只有一行,包含一个整数,即R 轮比赛结束后,排名第 Q 的选手的编号。

输入输出样例

输入样例#1:

2 4 2
7 6 6 7
10 5 20 15
输出样例#1:

1

说明

【样例解释】

【数据范围】

对于30% 的数据,1 ≤ N ≤ 100;

对于50% 的数据,1 ≤ N ≤ 10,000 ;

对于100%的数据,1 ≤ N ≤ 100,000,1 ≤ R ≤ 50,1 ≤ Q ≤ 2N,0 ≤ s1, s2, …, s2N≤10^8,1 ≤w1, w2 , …, w2N≤ 10^8。

noip2011普及组第3题。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node
{
int fenshu;
int shili;
int bh;
}a[];
int n,r,q;
int comp(const node & a,const node & b)
{
if(a.fenshu!=b.fenshu)
return a.fenshu>b.fenshu;
else return a.bh<b.bh;
}
int main()
{
scanf("%d%d%d",&n,&r,&q);
n=n*;
for(int i=;i<=n;i++)
scanf("%d",&a[i].fenshu),a[i].bh=i;
for(int i=;i<=n;i++)
scanf("%d",&a[i].shili);
sort(a+,a+n+,comp);
for(int j=;j<=r;j++)
{
for(int i=;i<=n;i=i+)
{ if(a[i].shili>=a[i+].shili)
a[i].fenshu++;
else if(a[i].shili<a[i+].shili)
a[i+].fenshu++;
}
sort(a+,a+n+,comp);
}
printf("%d",a[q].bh); return ;
}

P1309 瑞士轮 未完成 60的更多相关文章

  1. 洛谷 P1309 瑞士轮 解题报告

    P1309 瑞士轮 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低 ...

  2. P1309 瑞士轮 (吸氧了)

    P1309 瑞士轮 题解 1.这题可以模拟一下 2.sort吸氧可以过(可能是排序有点慢吧,不开会T) sort排序时注意: return 1 是满足条件,不交换 return 0是不满足,交换 代码 ...

  3. 洛谷P1309 瑞士轮(归并排序)

    To 洛谷.1309 瑞士轮 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平, ...

  4. luogu P1309 瑞士轮【排序】

    题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...

  5. NOIP2011 普及组 T3 洛谷P1309 瑞士轮

    今天题做太少,放道小题凑数233 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公 ...

  6. P1309 瑞士轮 排序选择 时间限制 归并排序

    题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...

  7. P1309 瑞士轮

    题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...

  8. 洛谷 P1309 瑞士轮

    题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...

  9. 洛谷P1309——瑞士轮(归并排序)

    https://www.luogu.org/problem/show?pid=1309#sub 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点 ...

随机推荐

  1. for、while循环(java基础知识四)

    1.循环结构概述和for语句的格式及其使用 * 什么是循环结构 循环语句可以在满足循环条件的情况下,反复执行某一段代码,这段被重复执行的代码被称为循环体语句,当反复执行这个循环体时,需要在合适的时候把 ...

  2. poj 2771 Guardian of Decency 解题报告

    题目链接:http://poj.org/problem?id=2771 题目意思:有一个保守的老师要带他的学生来一次短途旅行,但是他又害怕有些人会变成情侣关系,于是就想出了一个方法: 1.身高差距   ...

  3. 倒排列表求交集算法 包括baeza yates的交集算法

    #ifndef __INTERSECT_HPP__ #define __INTERSECT_HPP__ #include "probe.hpp" namespace themas ...

  4. .NET 4.0 System.Threading.Tasks学习笔记

    由于工作上的需要,学习使用了System.Threading.Tasks的使用,特此笔记下来. System.Threading.Tasks的作用: Tasks命名空间下的类试图使用任务的概念来解决线 ...

  5. https证书/即SSL数字证书申请途径和流程

    国际CA机构GlobalSign中国 数字证书颁发中心网站:http://cn.globalsign.com    https证书即SSL数字证书,是广泛用 于网站通讯加密传输的解决方案,是提供通信保 ...

  6. linux静默安装Oracle 11g

    ./runInstaller -silent -force -responseFile /home/oracle/software/database/response/orcl_install.rsp ...

  7. background-clip与background-origin

    规定背景的绘制区域 浏览器支持 IE9+.Firefox.Opera.Chrome 以及 Safari 支持 background-clip 属性. 注释:Internet Explorer 8 以及 ...

  8. 用 SDL2 平铺背景并显示前景

    环境:SDL2 + VC++2015 下面的代码将打开background.bmp和image.bmp,将background平铺背景,将image作为前景呈现 #include <iostre ...

  9. Gym 100962G Green Day (找规律)

    题意:你用k 个生成树构成一个完全图. 析:n 个点的完全图有n(n-1)/2个边,一个生成树有n-1个边,你有k 个生成树 即边数等于 K(n-1) ,即  n(n-1)/2 == k(n-1)   ...

  10. display:inline-block的div 与 display:block的div之间有间隔问题(div与div之间有间隔的可能性)

    首先看一下我出现的问题如下图: 如上图所示,我的导航栏是由三部分组成的,三部分样式如下: .logo{ /*红框*/ position: relative; display: inline-block ...