\(\\\)

Description


原题题面太过混乱出题人语文凉凉

给出一个长为 \(n\) 的数列 \(A\) ,多次询问:

对于一个区间 \([L_i,R_i]\),把区间内的所有数最少划分成多少个数集,使得每一个集合内没有相同元素。

  • \(A_i\le 10^9,n,m\le 2\times 10^5\)

\(\\\)

Solution


题目的模型很容易转化成区间众数问题。

莫队求解区间众数。

首先数据范围是假的,离散化之后就开的下桶了。

对于区间扩张,肯定是加一下桶,然后跟当前答案取 \(max\) 。

问题在于区间缩小时,删除一个数怎么搞。

\(\\\)

开始有一个 too simple 想法,是用堆去维护当前答案区间内所有数出现个数,然后懒惰删除法,每次更新时判断一下堆顶是否正确。

想一想是对的,但是 \(O(N\sqrt NlogN)\) 的复杂度对于 \(2\times 10^5\) 很吃力。

\(\\\)

一个机智的做法。

设 \(cnt[i]\) 表示 \(bkt[x]=i\) 的个数,也就是当前区间里出现次数为 \(i\) 的数的个数。

空间没有问题,因为最多出现数列长度的次数。

这样一来修改就容易了很多,减的时候只需要判断一下,当前数对应的 \(cnt\) 是否 \(>1\) 即可。

注意加减是对 \(cnt\) 和 \(bkt\) 的同时更新。

\(\\\)

Code


#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 200000
#define R register
#define gc getchar
using namespace std; inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
} int n,m,ans,bl[N],cnt[N],bkt[N],s[N],tmp[N]; struct Q{int l,r,ans,id;}q[N]; inline bool cmp1(Q x,Q y){
return bl[x.l]==bl[y.l]?x.r<y.r:bl[x.l]<bl[y.l];
} inline bool cmp2(Q x,Q y){return x.id<y.id;} inline void add(int p){
--cnt[bkt[s[p]]];
++cnt[++bkt[s[p]]];
ans=max(ans,bkt[s[p]]);
} inline void del(int p){
--cnt[bkt[s[p]]];
if(ans==bkt[s[p]]&&!cnt[bkt[s[p]]]) --ans;
++cnt[--bkt[s[p]]];
} int main(){
n=rd(); m=rd();
int t=sqrt(n),tot=0;
for(R int i=1,cntt=1;i<=n;++i){
tmp[i]=s[i]=rd();
if(i%t==0) ++cntt;
bl[i]=cntt;
}
sort(tmp+1,tmp+1+n);
for(R int i=1;i<=n;++i){
tmp[++tot]=tmp[i];
while(tmp[i+1]==tmp[i]&&i<=n) ++i;
}
for(R int i=1;i<=n;++i) s[i]=lower_bound(tmp+1,tmp+1+tot,s[i])-tmp;
for(R int i=1;i<=m;++i){
q[i].l=rd(); q[i].r=rd(); q[i].id=i;
}
sort(q+1,q+1+m,cmp1);
bkt[s[1]]=cnt[1]=ans=1;
int nowl=1,nowr=1;
for(R int i=1;i<=m;++i){
while(nowl<q[i].l){del(nowl);++nowl;}
while(nowl>q[i].l){--nowl;add(nowl);}
while(nowr>q[i].r){del(nowr);--nowr;}
while(nowr<q[i].r){++nowr;add(nowr);}
q[i].ans=ans;
}
sort(q+1,q+1+m,cmp2);
for(R int i=1;i<=m;++i) printf("%d\n",-q[i].ans);
return 0;
}

[ Luogu 3709 ] 大爷的字符串题的更多相关文章

  1. luogu 3709 大爷的字符串题 构造 莫队 区间众数

    题目链接 题目描述 给你一个字符串a,每次询问一段区间的贡献 贡献定义: 每次从这个区间中随机拿出一个字符\(x\),然后把\(x\)从这个区间中删除,你要维护一个集合S 如果\(S\)为空,你\(r ...

  2. luogu P3709 大爷的字符串题

    二次联通门 : luogu P3709 大爷的字符串题 /* luogu P3709 大爷的字符串题 莫队 看了半天题目 + 题解 才弄懂了要求什么... 维护两个数组 一个记录数字i出现了几次 一个 ...

  3. 【luogu P3709 大爷的字符串题】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3709 离散化+区间众数..? #include <iostream> #include < ...

  4. P3709 大爷的字符串题 (莫队)

    题目 P3709 大爷的字符串题 题意:求\([l,r]\)中众数的个数. 解析 维护两个数组: \(cnt[x]\),数\(x\)出现的次数. \(sum[x]\),出现次数为\(x\)的数的个数. ...

  5. AC日记——大爷的字符串题 洛谷 P3709

    大爷的字符串题 思路: 莫队,需开O2,不开50: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 20000 ...

  6. P3709 大爷的字符串题(莫队+结论)

    题目 P3709 大爷的字符串题 做法 有一个显然的结论:一段区间里最小答案为众数的个数 用莫队来离线求众数 \(tmp_i\)表示出现\(i\)次的数的个数,\(num_i\)表示\(i\)出现的次 ...

  7. 洛谷 P3709 大爷的字符串题

    https://www.luogu.org/problem/show?pid=3709 题目背景 在那遥远的西南有一所学校 /*被和谐部分*/ 然后去参加该省省选虐场 然后某蒟蒻不会做,所以也出了一个 ...

  8. 洛谷P3709 大爷的字符串题(莫队)

    题目背景 在那遥远的西南有一所学校 /*被和谐部分*/ 然后去参加该省省选虐场 然后某蒟蒻不会做,所以也出了一个字符串题: 题目描述 给你一个字符串a,每次询问一段区间的贡献 贡献定义: 每次从这个区 ...

  9. P3709 大爷的字符串题(50分)

    题目背景 在那遥远的西南有一所学校 /*被和谐部分*/ 然后去参加该省省选虐场 然后某蒟蒻不会做,所以也出了一个字符串题: 题目描述 给你一个字符串a,每次询问一段区间的贡献 贡献定义: 每次从这个区 ...

随机推荐

  1. Android 源码架构

    我们都知道Android系统是一个开源工程,在网上可以下载到源代码. 一般在网上搜索一下,就会找到各种下载源代码的方法,比如使用Git和Repo,android源代码下载的网址是http://andr ...

  2. docker pure-ftp 搭建ftp服务器

    参考:https://hub.docker.com/r/stilliard/pure-ftpd/ docker-compose.yml: ftp: image: stilliard/pure-ftpd ...

  3. POJ1077 Eight —— 反向BFS

    主页面:http://www.cnblogs.com/DOLFAMINGO/p/7538588.html 代码一:以数组充当队列,利用结构体中的pre追溯上一个状态在数组(队列)中的下标: #incl ...

  4. Silverlight实用窍门系列:1.Silverlight读取外部XML加载配置---(使用WebClient读取XAP包同目录下的XML文件))【附带实例源码】

    使用WebClient读取XAP包同目录下的XML文件 我们想要读取XAP包下面的XML文件,需要将此XML文件放在加载XAP包的网页的目录中去,然后使用URI方式读取此URL方式下的XML文件. 首 ...

  5. 使用gcc找出头文件的路径

    参考 http://stackoverflow.com/questions/13079650/how-can-i-find-the-header-files-of-the-c-programming- ...

  6. codeforces 696A A. Lorenzo Von Matterhorn(水题)

    题目链接: A. Lorenzo Von Matterhorn time limit per test 1 second memory limit per test 256 megabytes inp ...

  7. POJ3020 二分图匹配——最小路径覆盖

    Description The Global Aerial Research Centre has been allotted the task of building the fifth gener ...

  8. CCRect 构造函数的几个参数解释

    转自: http://blog.163.com/hzklclick_wy/blog/static/21550517520137139511839/     void CCRect::setRect(f ...

  9. IOS:程序的退出、App间的跳转

    今天在做一个音乐播放器的项目,发现这个点击退出程序的功能不能实现终于找到了一些有用的资料,就去网上看了半天资料,下面是退出程序的代码: 在动画里面可以自己添加一些,动画,达到相应的效果. AppDel ...

  10. View Programming Guide for iOS ---- iOS 视图编程指南(三)---Windows

    Windows Every iOS application needs at least one window—an instance of the UIWindow class—and some m ...