[LOJ#10064]黑暗城堡
Description
在顺利攻破 Lord lsp 的防线之后,lqr 一行人来到了 Lord lsp 的城堡下方。Lord lsp 黑化之后虽然拥有了强大的超能力,能够用意念力制造建筑物,但是智商水平却没怎么增加。现在 lqr 已经搞清楚黑暗城堡有 N 个房间,M 条可以制造的双向通道,以及每条通道的长度。lqr 深知 Lord lsp 的想法,为了避免每次都要琢磨两个房间之间的最短路径, Lord lsp一定会把城堡修建成树形的;但是,为了尽量提高自己的移动效率,Lord lsp 一定会使得城堡满足下面的条件:设 Di为如果所有的通道都被修建,第 i 号房间与第 1 号房间的最短路径长度;而 Si 为实际修建的树形城堡中第 i 号房间与第1 号房间的路径长度,对于所有满足 1≤i≤N 的整数 i,有 Si = Di。为了打败 Lord lsp,lqr想知道有多少种不同的城堡修建方案。于是 lqr 向 applepi 提出了这个问题。由于 applepi 还要忙着出模拟赛,所以这个任务就交给你了。当然,你只需要输出答案对 2^31 – 1 取模之后的结果就行了.
Input
第一行有两个整数 N 和 M。
之后 M 行,每行三个整数 X,Y 和 L,表示可以修建 X 和 Y 之间的一条长度为 L 的通道。
2≤N≤1000,N – 1≤M≤N(N – 1)/2,1≤L≤100
Output
输出一个整数,表示答案对 2^31 – 1 取模之后的结果。
Sample Input
3 3
1 2 2
1 3 1
2 3 1
Sample Output
2
首先求出单源最短路,然后考虑第i个点,我们可以枚举1~i-1个点,求出dis[j]+g[i][j]=dis[i]的点,然后使用乘法原理即可。由于第i个点不可能由那些dis比它大的点转移过来,因此我们要开始按dis排序
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7fffffff
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
const int N=1e3,M=1e6,MOD=0x7fffffff;
struct S1{
#define ls (p<<1)
#define rs (p<<1|1)
#define fa (p>>1)
struct node{
int x,v;
bool operator <(const node &a)const{return v<a.v;}
}Q[N*50+10];
int tot;
void insert(int x,int v){
Q[++tot]=(node){x,v};
int p=tot;
while (p!=1&&Q[p]<Q[fa]) swap(Q[p],Q[fa]),p=fa;
}
void Delete(){
Q[1]=Q[tot--];
int p=1,son;
while (ls<=tot){
if (rs>tot||Q[ls]<Q[rs]) son=ls;
else son=rs;
if (Q[son]<Q[p]) swap(Q[p],Q[son]),p=son;
else break;
}
}
}Heap;
int pre[(M<<1)+10],now[N+10],child[(M<<1)+10],val[(M<<1)+10],tot;
int g[N+10][N+10],dis[N+10],ID[N+10];
bool vis[N+10];
void join(int x,int y,int z){pre[++tot]=now[x],now[x]=tot,child[tot]=y,val[tot]=z;}
void insert(int x,int y,int z){join(x,y,z),join(y,x,z);}
bool cmp(const int &x,const int &y){return dis[x]<dis[y];}
void Dijkstra(int x){
memset(dis,63,sizeof(dis));
Heap.insert(x,dis[x]=0);
while (Heap.tot){
int Now=Heap.Q[1].x;
Heap.Delete();
if (vis[Now]) continue;
vis[Now]=1;
for (int p=now[Now],son=child[p];p;p=pre[p],son=child[p]){
if (dis[son]>dis[Now]+val[p]){
dis[son]=dis[Now]+val[p];
Heap.insert(son,dis[son]);
}
}
}
}
int main(){
int n=read(),m=read(),Ans=1;
memset(g,63,sizeof(g));
for (int i=1;i<=m;i++){
int x=read(),y=read(),z=read();
insert(x,y,z);
g[y][x]=g[x][y]=min(g[x][y],z);
}
for (int i=1;i<=n;i++) g[i][i]=0,ID[i]=i;
Dijkstra(1);
sort(ID+1,ID+1+n,cmp);
for (int i=2;i<=n;i++){
int res=0;
for (int j=1;j<i;j++)
if (dis[ID[j]]+g[ID[i]][ID[j]]==dis[ID[i]])
res++;
Ans=1ll*Ans*res%MOD;
}
printf("%d\n",Ans);
return 0;
}
[LOJ#10064]黑暗城堡的更多相关文章
- LOJ#10064. 「一本通 3.1 例 1」黑暗城堡
LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...
- loj黑暗城堡
黑暗城堡 题目描述 你知道黑暗城堡有\(N\)个房间,M 条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设\(D_i\)为如果所有的通道都被修建,第i号房间与第1号房间 ...
- 【loj10064】黑暗城堡
#10064. 「一本通 3.1 例 1」黑暗城堡 内存限制:512 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 上传者: 1bentong 提交 ...
- 一本通 P1486 【黑暗城堡】
题库 :一本通 题号 :1486 题目 :黑暗城堡 link :http://ybt.ssoier.cn:8088/problem_show.php?pid=1486 思路 :这道题既然要求使加入生成 ...
- 「CH6202」黑暗城堡
「CH6202」黑暗城堡 传送门 这道题是要让我们求以点 \(1\) 为源点的最短路树的方案数. 我们先跑一遍最短路,然后考虑类似 \(\text{Prim}\) 的过程. 当我们把点 \(x\) 加 ...
- 信息奥赛一本通1486: CH 6202 黑暗城堡 最短路径生成树计数
1486:黑暗城堡 [题目描述] 知道黑暗城堡有 N 个房间,M 条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设 Di为如果所有的通道都被修建,第 i 号房间与第 1 ...
- LOJ10064黑暗城堡
题目描述你知道黑暗城堡有 N 个房间,M 条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设 Di 为如果所有的通道都被修建,第 i 号房间与第 1 号房间的最短路径长 ...
- 【LOJ#10064】黑暗城堡
题目大意:定义一个无向图的最短路径生成树如下:在该无向图的生成树中,任意一个节点到根节点的距离均等于根节点到该节点的最短路.求有多少种最短路径生成树. 题解:首先跑一遍 dij 求出从根节点到每个节点 ...
- T57274 黑暗城堡
传送门 思路: 先求出各个点到 1 的最短路径.分别用两个数组将最短路径记录下来(一个要用来排序).按排序后的 dis 值从小到大枚举各点加入树有多少种方案,最后根据乘法原理把各个点的方案数乘起来就是 ...
随机推荐
- stl lower_bound()返回值
http://blog.csdn.net/niushuai666/article/details/6734403 函数lower_bound()在first和last中的前闭后开区间进行二分查找,返回 ...
- php的socket通信【转载】
对TCP/IP.UDP.Socket编程这些词你不会很陌生吧?随着网络技术的发展,这些词充斥着我们的耳朵.那么我想问: 1. 什么是TCP/IP.UDP?2. Soc ...
- [bzoj3879]SvT_后缀数组_RMQ_单调栈
SvT bzoj-3879 题目大意:给定一个字符串.每次询问给定$t$个位置,求两两位置开头的后缀的$LCP$之和. 注释:$1\le length\le 5\cdot 10^5$,$\sum t\ ...
- [bzoj1188][HNOI2007]分裂游戏_博弈论
分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...
- 携程Apollo(阿波罗)配置中心使用Google代码风格文件(在Eclipse使用Google代码风格)(配合阿里巴巴代码规约快速设置)
Apollo默认使用了Google的代码风格,文件放在这里: https://github.com/ctripcorp/apollo/tree/master/apollo-buildtools/sty ...
- 【.Net 学习系列】-- 反射的简单用法
新建两个项目:类库(Model)和控制台应用程序(ReflectTest). 在[Model]中添加一个类[User]: namespace Model { public class User { p ...
- easyui datagrid-detailview 嵌套高度自适应
实现效果 原因 异步加载,明细展开时,可能会遇到父列表不能自动适应子列表高度的变化 具体代码 $('#centerdatagrid').datagrid({ url:'${ctx}/offer/off ...
- SAS编程基础 - 数据获取与数据集操作(1)
1. 数据来源 SAS数据来源主要有两种:一是通过input语句创建,另外一种方式是通过外部数据文件获取. 1.1 libname 1.2 odbc 1.3 passthrough 1.4 impor ...
- go-import下划线的作用
原文:http://studygolang.com/articles/4356 ------------------------------------------------------------ ...
- 码农小汪-spring框架学习之2-spring IoC and Beans 控制反转 依赖注入 ApplicationContext BeanFactory
spring Ioc依赖注入控制反转 事实上这个东西很好理解的,并非那么的复杂. 当某个Java对象,须要调用还有一个Java对象的时候(被依赖的对象)的方法时.曾经我们的做法是怎么做呢?主动的去创建 ...