HDU-2817,同余定理+快速幂取模,水过~
A sequence of numbers
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768
K (Java/Others)
Total Submission(s): 4874 Accepted Submission(s): 1543
->Link<-
题意:给出一个数列(等差或等比)的前三项,求第K项对200907取余;
先来复习一下数列通项公式:
等差数列通项公式:An=a1+(n-1)d;n>=1;d为公差;
等比数列通项公式:An=a1*q^(n-1);q为公比;
虽然这公式有条件限制,但题目说了数列非递减;说明题目并没有那么叼,一般的公式就行;
同余定理:
同余这个概念最初是由德国数学家高斯发明的。同余的定义是这样的:
两个整数,a,b,如果他们同时除以一个自然数m,所得的余数相同,则称a,b对于模m同余。。记作a≡b(mod.m)。读作:a同余于b模m。 同余的性质也比较多,主要有以下一些:
1.对于同一个除数,两个数之和(或差)与它们的余数之和(或差)同余。
2.对于同一个除数,两个数的乘积与它们余数的乘积同余。
3.对于同一个除数,如果有两个整数同余,那么它们的差就一 定能被这个除数整除。
4.对于同一个除数,如果两个数同余,那么他们的乘方仍然同余。
思路:分两种情况考虑,等差或等比,如果是等比的话用快速幂取模做很快即好,但等差的时候怎么取余呢?
原来同余定理有:(a+b)%c=(a%c+b%c)%c;
推导:a=k1*c+a%c,b=k2*c+b%c;(a+b)%c=((k1*c+a%c)+(k2*c+b%c)%c)%c即上述所示;
这样等差也好做了;
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define MOD 200907
ll a,b,c,k;
ll fun(ll a,ll b)//快速幂取模;
{
ll x=1;
while(b)
{
if(b&1)
x=x*(a%MOD)%MOD;
a=(a*a)%MOD;
b=b>>1;
}
return x;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
ll sum;
scanf("%lld%lld%lld%lld",&a,&b,&c,&k);
if(2*b==a+c)//等差;
{
ll x=b-a;
sum=(a%MOD+(((k-1)%MOD)*(x%MOD)))%MOD;
}
else
{
ll x=b/a;
sum=(a%MOD)*(fun(x,k-1)%MOD)%MOD;
}
printf("%lld\n",sum);
}
return 0;
}
关键是这个同余定理!!!
HDU-2817,同余定理+快速幂取模,水过~的更多相关文章
- hdu 1097 A hard puzzle 快速幂取模
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1097 分析:简单题,快速幂取模, 由于只要求输出最后一位,所以开始就可以直接mod10. /*A ha ...
- 题解报告:hdu 1061 Rightmost Digit(快速幂取模)
Problem Description Given a positive integer N, you should output the most right digit of N^N. Input ...
- HDU 1061 Rightmost Digit (快速幂取模)
题意:给定一个数,求n^n的个位数. 析:很简单么,不就是快速幂么,取余10,所以不用说了,如果不会快速幂,这个题肯定是周期的, 找一下就OK了. 代码如下: #include <iostrea ...
- hdu 4704(费马小定理+快速幂取模)
Sum Time Limit: 2000/ ...
- 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies
G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...
- 【2018 ICPC焦作网络赛 G】Give Candies(费马小定理+快速幂取模)
There are N children in kindergarten. Miss Li bought them N candies. To make the process more intere ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- HDU 1061 Rightmost Digit --- 快速幂取模
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...
- 杭电 2817 A sequence of numbers【快速幂取模】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2817 解题思路:arithmetic or geometric sequences 是等差数列和等比数 ...
随机推荐
- Thinkpad x230设置启动顺序
设置可以从CD或者USB启动1.F1进入BIOS,Security → Secure Boot ,设置为:Disabled2.Startup → UEFI/Legacy Boot ,设置为:Both( ...
- Service官方教程(10)Bound Service的生命周期函数
Managing the Lifecycle of a Bound Service When a service is unbound from all clients, the Android sy ...
- vijos P1412多人背包 DP的前k优解
https://vijos.org/p/1412 把dp设成,dp[i][v][k]表示在前i项中,拥有v这个背包,的第k大解是什么. 那么dp[i][v][1...k]就是在dp[i - 1][v] ...
- Snort里如何将读取的包记录存到指定的目录下(图文详解)
不多说,直接上干货! 比如,在/root/log目录下. [root@datatest ~]# snort -dve -l /root/log 需要注意: 1) /log目录需要你自己建立,并修改权限 ...
- dockerfile构建的镜像
转载请注明出处 https://www.cnblogs.com/majianming/p/9536975.html 在每执行一个命令时,便会commit形成一个层,最后形成堆栈式的结构.最后的镜像是各 ...
- node入门(二)——gulpfile.js初探
本文关于gulpfile.js怎么写,利于完成个性化需求.本文开发环境默认已安装node,详情参考<node入门(一)——安装>. 一.安装gulp npm install -g gulp ...
- Android IJKPlayer缓冲区设置以及播放一段时间出错解决方案
IJKPlayer拖动播放进度会导致重新请求数据,未使用已经缓冲好的数据,所以应该尽量控制缓冲区大小,减少不必要的数据损失. mMediaPlayer.setOption(IjkMediaPlayer ...
- iOS---iPad开发及iPad特有的特技
iPad开发简单介绍 iPad开发最大的不同在于iPhone的就是屏幕控件的适配,以及横竖屏的旋转. Storyboard中得SizeClass的横竖屏配置,也不支持iPad开发. 1.在控制器中得到 ...
- Friday Q&A 2015-11-20:协变与逆变
作者:Mike Ash,原文链接,原文日期:2015-11-20译者:Cee:校对:千叶知风:定稿:numbbbbb 在现代的编程语言中,子类型(Subtypes)和超类型(Supertypes)已经 ...
- Beta冲刺提交-星期五
Beta冲刺提交-星期五 这个作业属于哪个课程 软件工程 这个作业要求在哪里 <作业要求的链接> 团队名称 唱跳RAP编程 这个作业的目标 1.进行每日例会,每个成员汇报自己今天完成 ...