hadoop 迭代消耗大 每次迭代启动一个完整的MapReduce作业

spark 首要目标就是避免运算时 过多的网络和磁盘IO开销

Resilient Distributed Datasets

http://www.cs.cmu.edu/~pavlo/courses/fall2013/static/slides/spark.pdf

Resilient Distributed Datasets
Presented by Henggang Cui
15799b Talk
1
Why not MapReduce
• Provide fault-tolerance, but:
• Hard to reuse intermediate results across
multiple computations
– stable storage for sharing data across jobs
• Hard to support interactive ad-hoc queries
2
Why not Other In-Memory Storage
• Examples: Piccolo
– Apply fine-grained updates to shared states
• Efficient, but:
• Hard to provide fault-tolerance
– need replication or checkpointing
3
Resilient Distributed Datasets (RDDs)
• Restricted form of distributed shared memory
– read-only, partitioned collection of records
– can only be built through coarse‐grained
deterministic transformations
• data in stable storage
• transformations from other RDDs.
• Express computation by
– defining RDDs
4
Fault Recovery
• Efficient fault recovery using lineage
– log one operation to apply to many elements
(lineage)
– recompute lost partitions on failure
5
Example
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
hdfs_errors = errors.filter(_.contains(“HDFS"))
6
Advantages of the RDD Model
• Efficient fault recovery
– fine-grained and low-overhead using lineage
• Immutable nature can mitigate stragglers
– backup tasks to mitigate stragglers
• Graceful degradation when RAM is not
enough
7
Spark
• Implementation of the RDD abstraction
– Scala interface
• Two components
– Driver
– Workers
8
• Driver
– defines and invokes actions on RDDs
– tracks the RDDs’ lineage
• Workers
– store RDD partitions
– perform RDD
transformations
Spark Runtime
9
Supported RDD Operations
• Transformations
– map (f: T->U)
– filter (f: T->Bool)
– join()
– ... (and lots of others)
• Actions
– count()
– save()
– ... (and lots of others)
10
Representing RDDs
• A graph-based representation for RDDs
• Pieces of information for each RDD
– a set of partitions
– a set of dependencies on parent RDDs
– a function for computing it from its parents
– metadata about its partitioning scheme and data
placement
11
RDD Dependencies
• Narrow dependencies
– each partition of the parent RDD is used by at
most one partition of the child RDD
• Wide dependencies
– multiple child partitions may depend on it
12
RDD Dependencies
13
RDD Dependencies
• Narrow dependencies
– allow for pipelined execution on one cluster node
– easy fault recovery
• Wide dependencies
– require data from all parent partitions to be
available and to be shuffled across the nodes
– a single failed node might cause a complete reexecution.
14
Job Scheduling
• To execute an action on an RDD
– scheduler decide the stages from the RDD’s
lineage graph
– each stage contains as many pipelined
transformations with narrow dependencies as
possible
15
Job Scheduling
16
Memory Management
• Three options for persistent RDDs
– in-memory storage as deserialized Java objects
– in-memory storage as serialized data
– on-disk storage
• LRU eviction policy at the level of RDDs
– when there’s not enough memory, evict a
partition from the least recently accessed RDD
17
Checkpointing
• Checkpoint RDDs to prevent long lineage
chains during fault recovery
• Simpler to checkpoint than shared memory
– Read-only nature of RDDs
18
Discussions
19
Checkpointing or Versioning?
20
• Frequent checkpointing, or
Keep all versions of ranks?

spark hadoop 对比 Resilient Distributed Datasets的更多相关文章

  1. Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)论文 | ApacheCN

    Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...

  2. Apache Spark RDD(Resilient Distributed Datasets)论文

    Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...

  3. Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)

    Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...

  4. Spark的核心RDD(Resilient Distributed Datasets弹性分布式数据集)

    Spark的核心RDD (Resilient Distributed Datasets弹性分布式数据集)  原文链接:http://www.cnblogs.com/yjd_hycf_space/p/7 ...

  5. spark 笔记 2: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

    http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf  ucb关于spark的论文,对spark中核心组件RDD最原始.本质的理解, ...

  6. RDD内存迭代原理(Resilient Distributed Datasets)---弹性分布式数据集

    Spark的核心RDD Resilient Distributed Datasets(弹性分布式数据集)   Spark运行原理与RDD理论 Spark与MapReduce对比,MapReduce的计 ...

  7. Scala当中什么是RDD(Resilient Distributed Datasets)弹性分布式数据集

    RDD(Resilient Distributed Datasets)弹性分布式数据集.你不好理解的话,可以把RDD就可以看成是一个简单的"动态数组"(比如ArrayList),对 ...

  8. 【Spark】RDD(Resilient Distributed Dataset)究竟是什么?

    目录 基本概念 官方文档 概述 含义 RDD出现的原因 五大属性 以单词统计为例,一张图熟悉RDD当中的五大属性 解构图 RDD弹性 RDD特点 分区 只读 依赖 缓存 checkpoint 基本概念 ...

  9. 大数据 --> Spark与Hadoop对比

    Spark与Hadoop对比 什么是Spark Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法 ...

随机推荐

  1. jQuery中Ajax事件beforesend及各参数含义1

    jQuery中Ajax事件beforesend及各参数含义 转自:http://blog.sina.com.cn/s/blog_609f9fdd0100wprz.html Ajax会触发很多事件. 有 ...

  2. CF1029E Tree with Small Distances

    题目描述 给定一棵树.要求往树中加入一些边使得从1到其他节点的距离至多是2 . 输出加入边的最小数量.(边全部都是无向的) 题解:好多人都说是贪心,但是我写的是树形dp. (这道题实在太像小胖守皇宫了 ...

  3. 使用 PHP + shell 生成 一键设置权限的脚本。

    linux 系统 支持PHP脚本一键设置环境.shell脚本一键设置环境.那么 我今天 使用 PHP  + shell 生成 一键设置权限的脚本. 举例子:linux服务器 一键配置discuz网站环 ...

  4. 【Jsp,Servlet初学总结】 含 cookie和session的使用

    一.Jsp 1. 指令: <%@ page language="java" import="java.*" contextType="text/ ...

  5. 树莓派 -- 输入设备驱动 (key) 续1

    测试 安装 input-utils pi@raspberrypi:~ $ sudo apt-get install input-utils Reading package lists... Done ...

  6. assert.fail()详解

    assert.fail(actual, expected, message, operator) 抛出一个 AssertionError.如果 message 是假值,错误信息会被设置为被 opera ...

  7. 优先队列重载运算符< 以及初始化列表

    优先队列定义 priority_queue<int, vector<int>, greater<int> >pq; 优先队列重载<运算符 在结构体中定义一个 ...

  8. 图解使用IDEA创建第一个Java程序HelloWorld

    前几次给大家分享了怎么在自己的电脑上配置 java 环境,准备工作做好了,我们就要开始我们真正的编码学习了.下面介绍使用 IDEA 创建我们的第一个 HelloWorld 程序. 1.打开 IDEA, ...

  9. VI/VIM 编辑器

    [是什么?] VI 是 Unix 操作系统和类 Unix 操作系统中最通用的文本编辑器. VIM 编辑器是从 VI 发展出来的一个性能更强大的文本编辑器.可以主动的以字体颜色辨别语法的正确性,方便程序 ...

  10. NYOJ-770仿射密码,乘数密码与移位密码的结合;

    仿射密码 时间限制:1000 ms  |  内存限制:65535 KB 难度:1 ->   Link   <- 和乘数密码差不多: 加密算法:Ek(m)=(k1*m+k2)%q;gcd(k ...