题目链接

Description

Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.

Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same location as before, but ends up facing the opposite direction. A cow that starts out facing forward will be turned backward by the machine and vice-versa.

Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.

Input

Line 1: A single integer: N

Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.

Output

Line 1: Two space-separated integers: K and M

Sample Input

7

B

B

F

B

F

B

B

Sample Output

3 3

Hint

For K = 3, the machine must be operated three times: turn cows (1,2,3), (3,4,5), and finally (5,6,7)

分析:

从第一个开始找如果当前为B 就需要改变 改变i到i+k-1的位置

一直找到n-k+1处 之后判断从n-k+2到n是否满足了题意 注意不要真的去修改

用一个sum值标记前面k-1个修改了多少次用来决定当前的是否要修改 利用尺取法 即前后推进

代码:

#include<stdio.h>
#include<string.h>
int a[5100],n,flag[5100];
int solve(int k)
{
int i;
memset(flag,0,sizeof(flag));//flag[i]表示区间[i,i+k-1] 是否需要翻转
int sum=0,cnt=0;//前k-1个转变的次数
for(i=1; i<=n-k+1; i++) //sum记录走到当前i,其前面k-1个翻转了多少次
{
if(i-k>=1)///因为每次翻转的是k个,
{
sum-=flag[i-k];
}
if(a[i]==0&&sum%2==0)///如果是B 且前面翻转了偶数次 仍旧需要翻转
{
flag[i]=1;
sum+=flag[i];
cnt++;
}
else if(a[i]==1&&sum%2==1)///如果是F 且前面翻转了奇数次
{
flag[i]=1;
sum+=flag[i];
cnt++;
}
// printf("i=%d flag[i]=%d\n",i,flag[i]);
} for(i; i<=n; i++)
{
if(i-k>=1)
{
sum-=flag[i-k];
}
///这就相当于还没有翻转好
if(sum%2==0&&a[i]==0) return -1;
else if(sum%2==1&&a[i]==1) return -1;
}
return cnt;
} int main()
{
int i,k,mn;
char s[2];
while(scanf("%d",&n)!=EOF)
{
mn=100010000;
for(i=1; i<=n; i++)
{
scanf("%s",s);
if(s[0]=='B') a[i]=0;
else if(s[0]=='F') a[i]=1;
}
// for(int i=1;i<=n;i++)
// printf("%d",a[i]);
// printf("\n");
k=1;
for(i=1; i<=n; i++)///i是指对应的间距
{
int mid=solve(i);///mid是指在相应的间距下的操作次数
///printf("k=%d,cnt=%d\n",i,mid);
if(mid==-1) continue;///在这个间距k下不能满足情况
if(mn>mid)
{
mn=mid;
k=i;
}
}
printf("%d %d\n",k,mn);
}
return 0;
}

POJ 3276 Face The Right Way (尺取法)的更多相关文章

  1. POJ 3061 (二分+前缀和or尺取法)

    题目链接: http://poj.org/problem?id=3061 题目大意:找到最短的序列长度,使得序列元素和大于S. 解题思路: 两种思路. 一种是二分+前缀和.复杂度O(nlogn).有点 ...

  2. POJ 3320 Jessica's Reading Problem 尺取法

    Description Jessica's a very lovely girl wooed by lots of boys. Recently she has a problem. The fina ...

  3. poj 3320 jessica's Reading PJroblem 尺取法 -map和set的使用

    jessica's Reading PJroblem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9134   Accep ...

  4. poj 2566Bound Found(前缀和,尺取法)

    http://poj.org/problem?id=2566: Bound Found Time Limit: 5000MS   Memory Limit: 65536K Total Submissi ...

  5. POJ 3320 Jessica's Reading Problem 尺取法/map

    Jessica's Reading Problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7467   Accept ...

  6. POJ 3320 尺取法,Hash,map标记

    1.POJ 3320 2.链接:http://poj.org/problem?id=3320 3.总结:尺取法,Hash,map标记 看书复习,p页书,一页有一个知识点,连续看求最少多少页看完所有知识 ...

  7. POJ 3320 Jessica‘s Reading Problem(哈希、尺取法)

    http://poj.org/problem?id=3320 题意:给出一串数字,要求包含所有数字的最短长度. 思路: 哈希一直不是很会用,这道题也是参考了别人的代码,想了很久. #include&l ...

  8. 尺取法 poj 2566

    尺取法:顾名思义就是像尺子一样一段一段去取,保存每次的选取区间的左右端点.然后一直推进 解决问题的思路: 先移动右端点 ,右端点推进的时候一般是加 然后推进左端点,左端点一般是减 poj 2566 题 ...

  9. POJ 3320 尺取法(基础题)

    Jessica's Reading Problem Description Jessica's a very lovely girl wooed by lots of boys. Recently s ...

随机推荐

  1. <Android>资源的访问,颜色、字符串、尺寸、XML、DRAWABLES资源分使用

    1.资源的访问 代码中使用Context的getResources()方法得到Resources对象,访问自己定义的资源R.资源文件类型.资源文件名称,访问系统定义的资源android.R. 资源文件 ...

  2. 分布式系统理论-terms

    Distributed programming is the art of solving the same problem that you can solve on a single comput ...

  3. lol人物模型提取(二)

      两个dds文件怎么导入到一个模型上呢?这模型又不能拆开.   一开始我想的是用两个材质球来完成,一个材质球对应一个dds文件,然而行不通.   一个材质球对应两个dds文件还不太会弄,于是我想着干 ...

  4. java 基本--数据类型转换--001

    小可转大,大转小可能会损失精度(编译出错,需要强制转换)A: byte,short,char -> int -> long -> float ->doubleB: byte,s ...

  5. c#对xml的操作

    操作xml可以通过XElement对象,比较方便的使用列举以下几点: 把字符串转变成XElement,保存成xml文件,加载xml文件: //把字符串解析成XElement对象 string str ...

  6. 【Asp.Net】IIS应用程序池添加ASP.NET v4.0

    可能在安装.NET Framewrok 4.0之前,IIS就已经装好了,结果在IIS的应用程序池中只有.NET 2.0的Classic .NET AppPool和DefaultAppPool.在使用v ...

  7. 【bzoj2591】[Usaco 2012 Feb]Nearby Cows 树形dp

    题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...

  8. sqlserver修改sa密码(在windows登陆没有权限的情况下)

    对于windows用户没有权限执行alter login sa enable的情况下,采用如下方法可以成功修改sa密码登陆. . 用Run as a administrator打开命令提示符里输入NE ...

  9. [BZOJ4822] [CQOI2017] 老C的任务

    题目链接 BZOJ:https://lydsy.com/JudgeOnline/problem.php?id=4822. 洛谷:https://www.luogu.org/problemnew/sho ...

  10. BZOJ5288 & 洛谷4436 & LOJ2508:[HNOI/AHOI2018]游戏——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5288 https://www.luogu.org/problemnew/show/P4436 ht ...