「6月雅礼集训 2017 Day5」仰望星空
【题目大意】
给你$n$个点,被一个半径为$R$的元圆划分成内(包含边界)、外两个部分。
要连若干线,每个点只能连一条线,不存在重点和三点共线。
线只能连在内部点和外部点之间,线长度不超过$d$。
如果一个外部点$w$和三个内部点$x,y,z$距离都不超过$d$,且两个内部点$x,z$没有和外部点$w$连线,我们准备从外部点$w$连到内部点$y$。那么如果$x$和$z$的连线有和$w$和$y$的连线相交,那么是不合法的。
求合法情况下,最多连多少线。以及方案。
$1 \leq n \leq 10^3, 1 \leq |x_i|, |y_i|, d, R \leq 2\times 10^4$
【题解】
考虑先把点分类。很明显发现答案=最大匹配。
对于每个外部点,以它为中心把内部点极角排序,那么得到了一个访问序列,然后我们直接跑匈牙利即可。
考虑这样如何保证那个奇怪的条件:
如果$x,y,z$按极角序顺次排过来,那么扫到$y$的时候,$x$如果没被匹配,一定先被扫描了,并当做匹配点。
所以这样保证了没有奇怪的条件这个情况。
然后我们就能求出匹配,考虑求方案。
对于匹配,需要找到一个合法的连边顺序(就保证一定要按这个极角序从前往后连边即可)
暴力找方案即可。
总复杂度$O(n^3)$,匈牙利跑不满,而且n一般来说为n/2(因为把点分成了一半)
这里极角排序可以用叉积,因为是圆外的点朝圆内的点连边,角度范围小于180°。
# include <stdio.h>
# include <string.h>
# include <iostream>
# include <algorithm> using namespace std; typedef long long ll;
typedef unsigned long long ull;
typedef long double ld; const int M = , N = 1e5 + ;
const int mod = ; int n, R, d;
struct P {
int x, y;
P() {}
P(int x, int y) : x(x), y(y) {}
friend P operator + (P a, P b) {
return P(a.x + b.x, a.y + b.y);
}
friend P operator - (P a, P b) {
return P(a.x - b.x, a.y - b.y);
}
friend int operator * (P a, P b) {
return a.x * b.y - a.y * b.x;
}
}a[M], b[M], C;
int an, bn; struct pa {
P a;
int id;
pa() {}
pa(P a, int id) : a(a), id(id) {}
}c[M]; int cn; P cmp_t;
int g[M][M], gn[M];
inline bool cmp(pa a, pa b) {
return (a.a - cmp_t) * (b.a - cmp_t) > ;
} inline ll dis2(P a, P b) {
return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
} bool vis[M];
int from[M], to[M];
int aid[M], bid[M]; inline int hungry(int x) {
for (int i=; i<=gn[x]; ++i) {
if(!vis[g[x][i]]) {
vis[g[x][i]] = ;
if(from[g[x][i]] == || hungry(from[g[x][i]])) {
from[g[x][i]] = x;
return ;
}
}
}
return ;
} int main() {
freopen("etoile.in", "r", stdin);
freopen("etoile.out", "w", stdout);
cin >> n >> R >> d;
for (int i=, _x, _y; i<=n; ++i) {
scanf("%d%d", &_x, &_y);
if(i == ) C = P(_x, _y);
if(dis2(P(_x, _y), C) <= (ll)R * R) aid[++an] = i, a[an] = P(_x, _y);
else bid[++bn] = i, b[bn] = P(_x, _y);
} // puts("===========");
// for (int i=1; i<=an; ++i) printf("%d %d\n", a[i].x, a[i].y);
// puts("===========");
// for (int i=1; i<=bn; ++i) printf("%d %d\n", b[i].x, b[i].y);
// puts("==========="); for (int i=; i<=bn; ++i) {
cmp_t = b[i]; cn = ;
for (int j=; j<=an; ++j)
if(dis2(a[j], cmp_t) <= (ll)d * d) c[++cn] = pa(a[j], j);
sort(c+, c+cn+, cmp);
for (int j=; j<=cn; ++j) g[i][j] = c[j].id;
gn[i] = cn;
} int ans = ;
for (int i=; i<=bn; ++i) {
memset(vis, , sizeof vis);
ans += hungry(i);
} for (int i=; i<=an; ++i) to[from[i]] = i; memset(vis, , sizeof vis);
cout << (ans << ) << endl; for (int i=; i<=ans; ++i) {
bool hv = ;
for (int j=; j<=bn; ++j) {
if(!to[j]) continue;
for (int k=; k<=gn[j]; ++k) {
if(!vis[g[j][k]]) {
if(g[j][k] == to[j]) hv = ;
break;
}
}
if(hv) {
vis[to[j]] = ;
printf("%d %d\n", bid[j], aid[to[j]]);
break;
}
}
}
return ;
}
/*
10 5530 5385
8 5730
5220 61
2896 2950
1025 649
5509 1773
6057 2432
6435 975
5366 8341
1127 3616
2849 1689
*/
「6月雅礼集训 2017 Day5」仰望星空的更多相关文章
- 「6月雅礼集训 2017 Day5」学外语
[题目大意] 给出$\{P_i\}$,求经过以下操作后能够得到的不同序列个数: 第一步,选择$i, j$,交换$P_i,P_j$:第二步,把所有$P_x=i$的$P_x$变为$j$,把所有$P_x=j ...
- 「6月雅礼集训 2017 Day5」吃干饭
[题目大意] 询问[L,R]中选若干个数异或起来得到的答案集合大小.多组数据. 对于50%的数据,$R - L \leq 10^4$ 对于100%的数据,$R - L \leq 10^{18}, T ...
- 「6月雅礼集训 2017 Day10」quote
[题目大意] 一个合法的引号序列是空串:如果引号序列合法,那么在两边加上同一个引号也合法:或是把两个合法的引号序列拼起来也是合法的. 求长度为$n$,字符集大小为$k$的合法引号序列的个数.多组数据. ...
- 「6月雅礼集训 2017 Day4」qyh(bzoj2687 交与并)
原题传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2687 [题目大意] 给出若干区间,求一个区间的大于等于2的子集,使得 |区间并| 和 | ...
- 「6月雅礼集训 2017 Day11」delight
[题目大意] 有$n$天,每天能吃饭.睡觉.什么事也不干 每天吃饭的愉悦值为$e_i$,睡觉的愉悦值为$s_i$,什么都不干愉悦值为0. 要求每连续$k$天都要有至少$E$天吃饭,$S$天睡觉. 求最 ...
- 「6月雅礼集训 2017 Day11」jump
[题目大意] 有$n$个位置,每个位置有一个数$x_i$,代表从$i$经过1步可以到达的点在$[\max(1, i-x_i), \min(i+x_i, n)]$中. 定义$(i,j)$的距离表示从$i ...
- 「6月雅礼集训 2017 Day11」tree
[题目大意] 给出一棵带权树,有两类点,一类黑点,一类白点. 求切断黑点和白点间路径的最小代价. $n \leq 10^5$ [题解] 直接最小割能过..但是树形dp明显更好写 设$f_{x,0/1/ ...
- 「6月雅礼集训 2017 Day10」perm(CodeForces 698F)
[题目大意] 给出一个$n$个数的序列$\{a_n\}$,其中有些地方的数为0,要求你把这个序列填成一个1到$n$的排列,使得: $(a_i, a_j) = 1$,当且仅当$(i, j) = 1$.多 ...
- 「6月雅礼集训 2017 Day8」route
[题目大意] 给出平面上$n$个点,求一条连接$n$个点的不相交的路径,使得转换的方向符合所给长度为$n-2$的字符串. $n \leq 5000$ [题解] 考虑取凸包上一点,然后如果下一个是‘R' ...
随机推荐
- Perfmon - Windows 自带系统监控工具
一. 简述 可以用于监视CPU使用率.内存使用率.硬盘读写速度.网络速度等. Perfmon提供了图表化的系统性能实时监视器.性能日志和警报管理,系统的性能日志可定义为二进制文件.文本文件.SQLSE ...
- 网众远程修改ip、dns
修改文件 修改ip vi /etc/rc.d/rc.inetd1.config IPADDR[0] 对应第一块网卡的ip 修改dns vi /etc/resolv.conf nameserver 21 ...
- 【python】 requirements使用方法
记得导入导出包的时候要想激活虚拟环境.1.导出requirements方法pip freeze > requirements.txt 2.安装requirements方法pip install ...
- 关于Axure RP
Axure RP 是一款专业的原型设计工具 用于快速创建应用软件的线框图.流程图.原型和规格说明文档 贴一张图
- java 中使用Base64
byte[] cipherData = Base64.encodeBase64(plainText.getBytes()); //默认不换行 byte[] cipherData = Base64.en ...
- BZOJ4871 Shoi2017摧毁“树状图”(树形dp)
设f[i][0/1/2/3/4/5]表示i子树中选一条链不包含根/i子树中选一条链包含根但不能继续向上延伸/i子树中选一条链可以继续向上延伸/选两条链不包含根/选两条链包含根但不能继续向上延伸/选两条 ...
- 源码安装和yum安装的区别。
yum是将yum源中别人已经编译好的rpm包下载到本地,然后安装,不需要考虑依赖,主要是方便.源码安装没法人为的控制,安装的版本也很低. 源码安装需要自己编译,安装,编译过程中可以设置参数.可安装的版 ...
- POJ1474:Video Surveillance——题解
http://poj.org/problem?id=1474 题目大意:给按照顺时针序的多边形顶点,问其是否有内核. —————————————————————————————— (和上道题目一模一样 ...
- BZOJ1293:[SCOI2009]生日礼物——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1293 https://www.luogu.org/problemnew/show/P2564#sub ...
- POJ 2774 求两个串的最长公共前缀 | 后缀数组
#include<cstdio> #include<algorithm> #include<cstring> #define N 200005 using name ...