【题目大意】

给你$n$个点,被一个半径为$R$的元圆划分成内(包含边界)、外两个部分。

要连若干线,每个点只能连一条线,不存在重点和三点共线。

线只能连在内部点和外部点之间,线长度不超过$d$。

如果一个外部点$w$和三个内部点$x,y,z$距离都不超过$d$,且两个内部点$x,z$没有和外部点$w$连线,我们准备从外部点$w$连到内部点$y$。那么如果$x$和$z$的连线有和$w$和$y$的连线相交,那么是不合法的。

求合法情况下,最多连多少线。以及方案。

$1 \leq n \leq 10^3, 1 \leq |x_i|, |y_i|, d, R \leq 2\times 10^4$

【题解】

考虑先把点分类。很明显发现答案=最大匹配。

对于每个外部点,以它为中心把内部点极角排序,那么得到了一个访问序列,然后我们直接跑匈牙利即可。

考虑这样如何保证那个奇怪的条件:

如果$x,y,z$按极角序顺次排过来,那么扫到$y$的时候,$x$如果没被匹配,一定先被扫描了,并当做匹配点。

所以这样保证了没有奇怪的条件这个情况。

然后我们就能求出匹配,考虑求方案。

对于匹配,需要找到一个合法的连边顺序(就保证一定要按这个极角序从前往后连边即可)

暴力找方案即可。

总复杂度$O(n^3)$,匈牙利跑不满,而且n一般来说为n/2(因为把点分成了一半)

这里极角排序可以用叉积,因为是圆外的点朝圆内的点连边,角度范围小于180°。

# include <stdio.h>
# include <string.h>
# include <iostream>
# include <algorithm> using namespace std; typedef long long ll;
typedef unsigned long long ull;
typedef long double ld; const int M = , N = 1e5 + ;
const int mod = ; int n, R, d;
struct P {
int x, y;
P() {}
P(int x, int y) : x(x), y(y) {}
friend P operator + (P a, P b) {
return P(a.x + b.x, a.y + b.y);
}
friend P operator - (P a, P b) {
return P(a.x - b.x, a.y - b.y);
}
friend int operator * (P a, P b) {
return a.x * b.y - a.y * b.x;
}
}a[M], b[M], C;
int an, bn; struct pa {
P a;
int id;
pa() {}
pa(P a, int id) : a(a), id(id) {}
}c[M]; int cn; P cmp_t;
int g[M][M], gn[M];
inline bool cmp(pa a, pa b) {
return (a.a - cmp_t) * (b.a - cmp_t) > ;
} inline ll dis2(P a, P b) {
return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
} bool vis[M];
int from[M], to[M];
int aid[M], bid[M]; inline int hungry(int x) {
for (int i=; i<=gn[x]; ++i) {
if(!vis[g[x][i]]) {
vis[g[x][i]] = ;
if(from[g[x][i]] == || hungry(from[g[x][i]])) {
from[g[x][i]] = x;
return ;
}
}
}
return ;
} int main() {
freopen("etoile.in", "r", stdin);
freopen("etoile.out", "w", stdout);
cin >> n >> R >> d;
for (int i=, _x, _y; i<=n; ++i) {
scanf("%d%d", &_x, &_y);
if(i == ) C = P(_x, _y);
if(dis2(P(_x, _y), C) <= (ll)R * R) aid[++an] = i, a[an] = P(_x, _y);
else bid[++bn] = i, b[bn] = P(_x, _y);
} // puts("===========");
// for (int i=1; i<=an; ++i) printf("%d %d\n", a[i].x, a[i].y);
// puts("===========");
// for (int i=1; i<=bn; ++i) printf("%d %d\n", b[i].x, b[i].y);
// puts("==========="); for (int i=; i<=bn; ++i) {
cmp_t = b[i]; cn = ;
for (int j=; j<=an; ++j)
if(dis2(a[j], cmp_t) <= (ll)d * d) c[++cn] = pa(a[j], j);
sort(c+, c+cn+, cmp);
for (int j=; j<=cn; ++j) g[i][j] = c[j].id;
gn[i] = cn;
} int ans = ;
for (int i=; i<=bn; ++i) {
memset(vis, , sizeof vis);
ans += hungry(i);
} for (int i=; i<=an; ++i) to[from[i]] = i; memset(vis, , sizeof vis);
cout << (ans << ) << endl; for (int i=; i<=ans; ++i) {
bool hv = ;
for (int j=; j<=bn; ++j) {
if(!to[j]) continue;
for (int k=; k<=gn[j]; ++k) {
if(!vis[g[j][k]]) {
if(g[j][k] == to[j]) hv = ;
break;
}
}
if(hv) {
vis[to[j]] = ;
printf("%d %d\n", bid[j], aid[to[j]]);
break;
}
}
}
return ;
}
/*
10 5530 5385
8 5730
5220 61
2896 2950
1025 649
5509 1773
6057 2432
6435 975
5366 8341
1127 3616
2849 1689
*/

「6月雅礼集训 2017 Day5」仰望星空的更多相关文章

  1. 「6月雅礼集训 2017 Day5」学外语

    [题目大意] 给出$\{P_i\}$,求经过以下操作后能够得到的不同序列个数: 第一步,选择$i, j$,交换$P_i,P_j$:第二步,把所有$P_x=i$的$P_x$变为$j$,把所有$P_x=j ...

  2. 「6月雅礼集训 2017 Day5」吃干饭

    [题目大意] 询问[L,R]中选若干个数异或起来得到的答案集合大小.多组数据. 对于50%的数据,$R - L \leq 10^4$ 对于100%的数据,$R - L \leq 10^{18}, T ...

  3. 「6月雅礼集训 2017 Day10」quote

    [题目大意] 一个合法的引号序列是空串:如果引号序列合法,那么在两边加上同一个引号也合法:或是把两个合法的引号序列拼起来也是合法的. 求长度为$n$,字符集大小为$k$的合法引号序列的个数.多组数据. ...

  4. 「6月雅礼集训 2017 Day4」qyh(bzoj2687 交与并)

    原题传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2687 [题目大意] 给出若干区间,求一个区间的大于等于2的子集,使得 |区间并| 和 | ...

  5. 「6月雅礼集训 2017 Day11」delight

    [题目大意] 有$n$天,每天能吃饭.睡觉.什么事也不干 每天吃饭的愉悦值为$e_i$,睡觉的愉悦值为$s_i$,什么都不干愉悦值为0. 要求每连续$k$天都要有至少$E$天吃饭,$S$天睡觉. 求最 ...

  6. 「6月雅礼集训 2017 Day11」jump

    [题目大意] 有$n$个位置,每个位置有一个数$x_i$,代表从$i$经过1步可以到达的点在$[\max(1, i-x_i), \min(i+x_i, n)]$中. 定义$(i,j)$的距离表示从$i ...

  7. 「6月雅礼集训 2017 Day11」tree

    [题目大意] 给出一棵带权树,有两类点,一类黑点,一类白点. 求切断黑点和白点间路径的最小代价. $n \leq 10^5$ [题解] 直接最小割能过..但是树形dp明显更好写 设$f_{x,0/1/ ...

  8. 「6月雅礼集训 2017 Day10」perm(CodeForces 698F)

    [题目大意] 给出一个$n$个数的序列$\{a_n\}$,其中有些地方的数为0,要求你把这个序列填成一个1到$n$的排列,使得: $(a_i, a_j) = 1$,当且仅当$(i, j) = 1$.多 ...

  9. 「6月雅礼集训 2017 Day8」route

    [题目大意] 给出平面上$n$个点,求一条连接$n$个点的不相交的路径,使得转换的方向符合所给长度为$n-2$的字符串. $n \leq 5000$ [题解] 考虑取凸包上一点,然后如果下一个是‘R' ...

随机推荐

  1. Activity生命周期 与 Activity 之间的通信

    一. Activity生命周期 上图 1. Activity状态 激活状态 : Activity出于前台 , 栈顶位置; 暂停状态 : 失去了焦点 , 但是用户仍然可以看到 , 比如弹出一个对话框 , ...

  2. TCP系列08—连接管理—7、TCP 常见选项(option)

    一.TCP选项概述 在前面介绍TCP头的时候,我们说过tcp基本头下面可以带有tcp选项,其中有些选项只能在连接过程中随着SYN包发送,有些可以延后.下表汇总了一些tcp选项 其中我标记为红色的部分是 ...

  3. eclipse 创建并运行maven web项目

    这两天想在eclipse上运行maven web项目,折腾了许久,总算success啦. 1,利用eclipse创建dynamic web project(eclipse需要安装m2eclipse). ...

  4. week1 四人小组项目

    小组名称:nice! 项目组长:李权 组员:于淼 刘芳芳 杨柳 项目选题:东北师范大学论坛 作为东北师范大学同学间的信息交流平台,要满足的需求如下: 1.校内信息及公告 2.毕业生招聘信息 3.课程查 ...

  5. xpath教程二 ---- 通过ID和Class检索

    必备知识点 在html中,id是唯一的 在html中,class是可以多处引用的 工具 Python3版本 lxml库[优点是解析快] HTML代码块[从网络中获取或者自己杜撰一个] requests ...

  6. django为model设置表名

    class redis_data(models.Model):     class Meta:         db_table='redis_data'     key=models.CharFie ...

  7. 关于已部署的WCF服务升级的问题

    在日常的开发过程中,我们会经常迭代发布不同的版本,所以WCF服务的接口也会经常处于变动的状态,比如在传递实体类中新加一个字段.修改参数名称等等关于服务升级的问题.但是我们不可能让已发布的版本重新引用新 ...

  8. 通过设置窗体的AcceptButton属性,可以设置窗体的“接受”按钮,若此设计,则用户每次按下Enter键都相当于单击该按钮

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  9. C语言中printf直接打出2进制数是%什么?16进制是什么?

    #include <iostream> #include <stdio.h> #include <stdlib.h> #include <string.h&g ...

  10. HTML表单之input元素的23种type类型

    摘自:http://www.cnblogs.com/xiaohuochai/p/5179909.html 了解HTML表单之input元素的23种type类型 随着HTML5的出现,input元素新增 ...