默认caffe已经编译好了,并且编译好了pycaffe

1 数据准备

首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直接用文件夹的名字即可)。即训练数据集:/data/train/0、/data/train/1  训练数据集:/data/val/0、/data/val/1。

数据准备好之后,创建记录数据文件和对应标签的txt文件

(1)创建训练数据集的train.txt

 import os
f =open(r'train.txt',"w")
path = os.getcwd()+'/data/train/'
for filename in os.listdir(path) :
count = 0
for file in os.listdir(path+filename) :
count = count + 1
ff='/'+filename+"/"+file+" "+filename+"\n"
f.write(ff)
print '{} class: {}'.format(filename,count)
f.close()

(2)创建测试数据集val.txt

 import os
f =open(r'val.txt',"w")
path = os.getcwd()+'/data/val/'
for filename in os.listdir(path) :
count = 0
for file in os.listdir(path+filename) :
count = count + 1
ff='/'+filename+"/"+file+" "+filename+"\n"
f.write(ff)
print '{} class: {}'.format(filename,count)
f.close()

注意,txt中文件的路径为: /类别文件夹名/文件名(空格,不能是制表符)类别

2 创建LMDB数据文件

创建createlmdb.sh使用caffe自带的(bulid/tools下的)convert_imageset创建LMDB数据文件,主要是注意数据文件以及上一步生成的txt文件的位置,注意数据文件的RESIZE,后边在进行训练和测试的时候还要用到,其余就是文件的路径的问题了。

 #!/usr/bin/env sh

 CAFFE_ROOT=/home/caf/object/caffe
TOOLS=$CAFFE_ROOT/build/tools
TRAIN_DATA_ROOT=/home/caf/wk/learn/data/train
VAL_DATA_ROOT=/home/caf/wk/learn/data/val
DATA=/home/caf/wk/learn/data
EXAMPLE=/home/caf/wk/learn/data/lmdb
# Set RESIZE=true to resize the images to x . Leave as false if images have
# already been resized using another tool.
RESIZE=true
if $RESIZE; then
RESIZE_HEIGHT=
RESIZE_WIDTH=
else
RESIZE_HEIGHT=
RESIZE_WIDTH=
fi if [ ! -d "$TRAIN_DATA_ROOT" ]; then
echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
echo "Set the TRAIN_DATA_ROOT variable in create_face_48.sh to the path" \
"where the face_48 training data is stored."
exit
fi if [ ! -d "$VAL_DATA_ROOT" ]; then
echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"
echo "Set the VAL_DATA_ROOT variable in create_face_48.sh to the path" \
"where the face_48 validation data is stored."
exit
fi echo "Creating train lmdb..." GLOG_logtostderr= $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$TRAIN_DATA_ROOT \
$DATA/train.txt \
$EXAMPLE/face_train_lmdb echo "Creating val lmdb..." GLOG_logtostderr= $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$VAL_DATA_ROOT \
$DATA/val.txt \
$EXAMPLE/face_val_lmdb echo "Done."

3 定义网络

caffe接受的网络模型是prototxt文件,对于caffe网络的定义语法有详细的解释,本次实验用的是AlexNet,保存在train_val.prototxt

 name: "AlexNet"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
data_param {
source: "/home/caf/wk/learn/data/lmdb/face_train_lmdb"
batch_size:
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
data_param {
source: "/home/caf/wk/learn/data/lmdb/face_val_lmdb"
batch_size:
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
kernel_size:
stride:
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size:
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
group:
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size:
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
group:
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
group:
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
inner_product_param {
num_output:
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
inner_product_param {
num_output:
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
inner_product_param {
num_output:
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value:
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}
layer {
name: "prob"
type: "Softmax"
bottom: "fc8"
top: "prob"
}

创建超参数文件slover.prototxt,主要定义训练的参数,包括迭代次数,每迭代多少次保存模型文件,学习率等等,net就是刚才定义的训练网络,这里训练和测试使用同一个网络。

 net: "train_val.prototxt"
test_iter:
test_interval:
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize:
display:
max_iter:
momentum: 0.9
weight_decay: 0.005
solver_mode: GPU
snapshot:
snapshot_prefix: "model/"

4 训练模型

创建train.sh使用GPU进行训练,否则太慢!!!

 #!/usr/bin/env sh
CAFFE_ROOT=/home/caf/object/caffe
SLOVER_ROOT=/home/caf/wk/learn
$CAFFE_ROOT/build/tools/caffe train --solver=$SLOVER_ROOT/slover.prototxt --gpu=

在model文件夹下会生成caffemodel文件,使用这些文件用于图像的分类等操作。

4 测试

创建deploy.prototxt进行测试,和训练网络一样,只不过用于实际分类的网络并不需要训练网络那些参数了,因此需要重新定义一个模型文件,测试的图片在该模型中进行。

deploy.prototxt文件和train_val.prototxt文件不同的地方在于:

(1)输入的数据不再是LMDB,也不分为测试集和训练集,输入的类型为Input,定义的维度,和训练集的数据维度保持一致,227*227,否则会报错;

(2)去掉weight_filler和bias_filler,这些参数已经存在于caffemodel中了,由caffemodel进行初始化。

(3)去掉最后的Accuracy层和loss层,换位Softmax层,表示分为某一类的概率。

 name: "AlexNet"
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: dim: dim: dim: } }
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
kernel_size:
stride:
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size:
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
group:
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size:
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
group:
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
group:
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
inner_product_param {
num_output:
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
inner_product_param {
num_output:
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
inner_product_param {
num_output:
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "fc8"
top: "prob"
}

用于训练的python代码,使用caffe中python的接口,主要定义好自己训练好的参数文件,模型文件的位置,以及均值文件的位置。

 import numpy as np
import matplotlib.pyplot as plt import sys
caffe_root="/home/caf/object/caffe/"
sys.path.insert(0,caffe_root+'python')
import caffe
caffe.set_device(0)
caffe.set_mode_gpu()
model_def = 'deploy.prototxt'
model_weights = 'model/_iter_100.caffemodel'
net = caffe.Net(model_def,
model_weights,
caffe.TEST)
mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')
mu = mu.mean(1).mean(1)
#print 'mean-subtracted values:', zip('BGR', mu)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', mu)
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2,1,0))
net.blobs['data'].reshape(3,227, 227)
image = caffe.io.load_image('test.jpg')
transformed_image = transformer.preprocess('data', image)
#plt.imshow(image)
#plt.show()
net.blobs['data'].data[...] = transformed_image
output = net.forward()
output_prob = output['prob']
print output_prob
print 'predicted class is:', output_prob.argmax()

遇到的问题

(1)标签文件不能用制表符,必须是空格,否则会找不到数据文件

(2)CUDA问题,报一个类似叫CUDASuccess的错误,说明GPU空间不够,需要释放空间,使用  nvidia-smi  命令查看那个程序占用GPU过高,使用   kill -9 PID结束掉即可

(3)由于caffe版本的问题,层的定义 有layer和layers,使用layer定义,type需要加双引号,是字符格式;使用layers定义,type不用加双引号,变为全大写字母

caffe训练自己的数据集的更多相关文章

  1. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  2. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

  3. SSD框架训练自己的数据集

    SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证.本文介绍如何使用SSD实现对自己数据集的训练和验证过程,内容包括: 1 数据集的标注2 数据集的转换3 使用SSD如 ...

  4. caffe︱深度学习参数调优杂记+caffe训练时的问题+dropout/batch Normalization

    一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优 ...

  5. 目标检测算法SSD之训练自己的数据集

    目标检测算法SSD之训练自己的数据集 prerequesties 预备知识/前提条件 下载和配置了最新SSD代码 git clone https://github.com/weiliu89/caffe ...

  6. 实践详细篇-Windows下使用Caffe训练自己的Caffemodel数据集并进行图像分类

    三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分 ...

  7. [caffe] caffe训练tricks

    Tags: Caffe Categories: Tools/Wheels --- 1. 将caffe训练时将屏幕输出定向到文本文件 caffe中自带可以画图的工具,在caffe路径下: ./tools ...

  8. 使用py-faster-rcnn训练自己的数据集

    https://www.jianshu.com/p/a672f702e596 本文记录了在ubuntu16.04下使用py-faster-rcnn来训练自己的数据集的大致过程. 在此之前,已经成功配置 ...

  9. 【Tensorflow系列】使用Inception_resnet_v2训练自己的数据集并用Tensorboard监控

    [写在前面] 用Tensorflow(TF)已实现好的卷积神经网络(CNN)模型来训练自己的数据集,验证目前较成熟模型在不同数据集上的准确度,如Inception_V3, VGG16,Inceptio ...

随机推荐

  1. html 简单的预缓存

    切图生成html,加鼠标响应,预缓存 <style> .d4{ width:190; height:170; background-image: url(images/未标题-1_09-1 ...

  2. A Deep Compositional Framework for Human-like Language Acquisition in Virtual Environment

    论文地址:https://128.84.21.199/abs/1703.09831 这篇论文来自于百度的机器学习研究院,作者为:徐伟.余昊男.张海超 这篇论文用了多种技术的组合: reinforcem ...

  3. ubuntu 用命令行设置chrome的proxy

    google-chrome-stable --proxy-server="IP proxy Server:port"

  4. 对Linux命令进一步学习

    root@wuheng-virtual-machine:/home/wuheng# ls -ltotal 44drwxr-xr-x 2 wuheng wuheng 4096 Mar  3 01:30 ...

  5. ios 页面过长卡顿的情况

    解决方案如下: -webkit-overflow-scrolling: touch;

  6. Android中的Manifest.permission(应用权限)整理

    ACCESS_CHECKIN_PROPERTIES 允许读/写登记数据库(checkin database),中的“properties”表,用来改变他的值来上传东西. 这个权限第三方应用无法使用. ...

  7. python解释器的分类及特点

    CPython 当从Python官方网站下载并安装好Python2.7后,就直接获得了一个官方版本的解释器:Cpython,这个解释器是用C语言开发的,所以叫CPython,在命名行下运行python ...

  8. redis Could not connect to Redis at 127.0.0.1:6379: Connection refused 问题解决

    1.启动redis 客户端 redis-cli 报错 redis Could not connect to Redis at 127.0.0.1:6379: Connection refused 是因 ...

  9. Linux下RPM包管理

    概述 一种用于互联网下载包的打包及安装工具,它包含在某些linux分发版中.它生成具有.RPM扩展名的文件.RPM是Redhat Package Manager(Redhat软件包管理工具)的缩写.这 ...

  10. 《挑战程序设计竞赛》2.2 贪心法-其它 POJ3617 3069 3253 2393 1017 3040 1862 3262

    POJ3617 Best Cow Line 题意 给定长度为N的字符串S,要构造一个长度为N的字符串T.起初,T是一个空串,随后反复进行下列任意操作: 从S的头部(或尾部)删除一个字符,加到T的尾部 ...