题目描述

小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数。小B请你帮助他回答询问。

输入输出格式

输入格式:

第一行,三个整数N、M、K。

第二行,N个整数,表示小B的序列。

接下来的M行,每行两个整数L、R。

输出格式:

M行,每行一个整数,其中第i行的整数表示第i个询问的答案。

输入输出样例

输入样例#1:

6 4 3

1 3 2 1 1 3

1 4

2 6

3 5

5 6

输出样例#1:

6

9

5

2

说明

对于全部的数据,1<=N、M、K<=50000

题解

练习一道莫队水题

加数删数的时候先把之前的贡献从当前答案里减掉,完成加删数操作后,再往答案里加个新的贡献就行了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=50000+10;
int n,m,k,cnt[MAXN],A[MAXN],Be[MAXN],unit;
ll ans[MAXN],sum;
struct node{
int l,r,id;
inline bool operator < (const node &A) const {
return Be[l]==Be[A.l]?r<A.r:l<A.l;
};
};
node query[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void modify(int x,int k)
{
sum-=1ll*cnt[x]*cnt[x];
cnt[x]+=k;
sum+=1ll*cnt[x]*cnt[x];
}
int main()
{
read(n);read(m);read(k);
unit=std::sqrt(k);
for(register int i=1;i<=n;++i)read(A[i]);
for(register int i=1;i<=k;++i)Be[i]=i/unit+1;
for(register int i=1;i<=m;++i)
{
read(query[i].l),read(query[i].r);
query[i].id=i;
}
std::sort(query+1,query+m+1);
int l=1,r=0;
for(register int i=1;i<=m;++i)
{
while(l<query[i].l)modify(A[l++],-1);
while(l>query[i].l)modify(A[--l],1);
while(r<query[i].r)modify(A[++r],1);
while(r>query[i].r)modify(A[r--],-1);
ans[query[i].id]=sum;
}
for(register int i=1;i<=m;++i)write(ans[i],'\n');
return 0;
}

【刷题】洛谷 P2709 小B的询问的更多相关文章

  1. [洛谷 P2709] 小B的询问

    P2709 小B的询问 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数 ...

  2. 洛谷——P2709 小B的询问

    P2709 小B的询问 莫队算法,弄两个指针乱搞即可 这应该是基础莫队了吧 $x^2$可以拆成$((x-1)+1)^2$,也就是$(x-1)^2+1^2+2\times (x-1)$,那么如果一个数字 ...

  3. 洛谷P2709 小B的询问 莫队做法

    题干 这个是用来学莫队的例题,洛谷详解 需要注意的一点,一定要分块!不然会慢很多(直接TLE) 其中分块只在排序的时候要用,并且是给问题右端点分块 再就是注意add与del函数里的操作,增加数量不提, ...

  4. [题解]洛谷P2709 小B的询问

    地址 是一道莫队模板题. 分析 设\(\text{vis[i]}\)表示元素\(\text{i}\)出现的次数 当一个元素进入莫队时,它对答案的贡献增加.有\(\delta Ans=(X+1)^2-X ...

  5. 洛谷P2709 小B的询问

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  6. 洛谷P2709 小B的询问 莫队

    小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小 ...

  7. 洛谷 P2709 小B的询问(莫队)

    题目链接:https://www.luogu.com.cn/problem/P2709 这道题是模板莫队,然后$i$在$[l,r]$区间内的个数就是$vis[ ]$数组 $add()$和$del()$ ...

  8. 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)

    莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...

  9. 洛谷2709 小B的询问(莫队)

    题面 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R] ...

随机推荐

  1. Netty示例

    一,服务端 ** * 测试Netty类库:服务端代码 * Created by LiuHuiChao on 2016/10/24. */ public class NettyServerTest { ...

  2. rsync同步的艺术

    转自:http://roclinux.cn/?p=2643 如果你是一位运维工程师,你很可能会面对几十台.几百台甚至上千台服务器,除了批量操作外,环境同步.数据同步也是必不可少的技能. 说到“同步”, ...

  3. 分享开源的GB/T-2260国家行政区划代码

    项目中需要用到省市数据,在网上搜了一下,很多旧数据,稍微新一点的下载就要积分.X币什么的,很不爽,最后在GitHub上找到一个开源的,还有各种语言版本的,非常方便! https://github.co ...

  4. 第七模块:项目实战一 第1章 项目实战:CRM客户关系管理系统开发

    01-crm介绍 02-权限系统介绍 03-第一版表结构设计 04-第二版表结构设计 05-orm中创建表结构 06-销售管理系统业务 07-销售管理系统权限信息录入 08-快速实现简单的权限控制的设 ...

  5. Java学习 · 初识 异常机制

    异常机制 1.   程序中的异常 a)     b)    面对异常如何解决 i.           由开发者通过if-else来解决 代码臃肿 程序员需要花费很大精力 ii.           ...

  6. 并行程序模拟(Concurrency Simulator, ACM/ICPC World Finals 1991,Uva210)

    任务介绍 你的任务是模拟n个程序的并行运算.(按照输入编号为1~n)的并行执行. 代码实现 #define LOCAL #include<bits/stdc++.h> using name ...

  7. python常用命令—ipython3环境下获取某个文件夹下的文件列表

    import os os.listdir('文件夹路径')

  8. 洛谷P1068 分数线划定:sort结构体排序+贪心

    题目描述 世博会志愿者的选拔工作正在 A 市如火如荼的进行.为了选拔最合适的人才,A市对所有报名的选手进行了笔试,笔试分数达到面试分数线的选手方可进入面试. 面试分数线根据计划录取人数的150%划定, ...

  9. 创新手机游戏《3L》开发点滴(1)——道具、物品、装备表设计

    一.游戏物品/道具系统数据模型设计特点 为了让游戏更加的丰富,我们1201团队的新手机游戏设计了道具系统.于是丰富了游戏.取悦了玩家,哭了开发——道具/物品数据子系统是简单的.复杂的.不确定的: 简单 ...

  10. js经典试题之w3规范系列

    js经典试题之w3规范系列 1:w3c 制定的 javascript 标准事件模型的正确的顺序? 答案:事件捕获->事件处理->事件冒泡 解析:先事件捕获从windows > doc ...