BZOJ 1296 粉刷匠(分组背包套DP)
刚开始往网络流的方向想。建不出图。。。
因为每次只能对一行进行染色。每一行都是独立的。
对于每一行,因为格子只能染一次,所以可以发现这是一个多阶段决策问题,这个决策就是当前格子染0还是染1.
令dp[i][j][k](k==0||k==1)表示当前行第i个格子用了j次染色,且这次染色染为k色 的最多有效格子。
这样我们用了O(n*m*m)得出了每一行用了v次染色获得的最多有效格子val。
显然的分组背包。每一个组最多选一种。再用O(V*n*m)求一遍分组背包即可。
总复杂度O((V+m)*m*n).
- # include <cstdio>
- # include <cstring>
- # include <cstdlib>
- # include <iostream>
- # include <vector>
- # include <queue>
- # include <stack>
- # include <map>
- # include <set>
- # include <cmath>
- # include <algorithm>
- using namespace std;
- # define lowbit(x) ((x)&(-x))
- # define pi 3.1415926535
- # define eps 1e-
- # define MOD
- # define INF
- # define mem(a,b) memset(a,b,sizeof(a))
- # define FOR(i,a,n) for(int i=a; i<=n; ++i)
- # define FO(i,a,n) for(int i=a; i<n; ++i)
- # define bug puts("H");
- # define lch p<<,l,mid
- # define rch p<<|,mid+,r
- # define mp make_pair
- # define pb push_back
- typedef pair<int,int> PII;
- typedef vector<int> VI;
- # pragma comment(linker, "/STACK:1024000000,1024000000")
- typedef long long LL;
- int Scan() {
- int res=, flag=;
- char ch;
- if((ch=getchar())=='-') flag=;
- else if(ch>=''&&ch<='') res=ch-'';
- while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
- return flag?-res:res;
- }
- void Out(int a) {
- if(a<) {putchar('-'); a=-a;}
- if(a>=) Out(a/);
- putchar(a%+'');
- }
- const int N=;
- //Code begin...
- int val[][], dp[][][], ans[];
- char s[][];
- int main ()
- {
- int n, m, T;
- scanf("%d%d%d",&n,&m,&T);
- FOR(i,,n) scanf("%s",s[i]+);
- FOR(i,,n) {
- mem(dp,);
- FOR(j,,m) FOR(k,,j) {
- dp[j][k][]=max(dp[j-][k][],max(dp[j-][k-][],dp[j-][k-][]))+(s[i][j]=='');
- dp[j][k][]=max(dp[j-][k][],max(dp[j-][k-][],dp[j-][k-][]))+(s[i][j]=='');
- }
- FOR(j,,m) val[i][j]=max(dp[m][j][],dp[m][j][]);
- }
- FOR(i,,n) for (int j=T; j>=; --j) for (int k=min(j,m); k>=; --k)
- ans[j]=max(ans[j],ans[j-k]+val[i][k]);
- printf("%d\n",ans[T]);
- return ;
- }
BZOJ 1296 粉刷匠(分组背包套DP)的更多相关文章
- BZOJ 1296 粉刷匠
Description windy有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. ...
- Codevs 1744 格子染色==BZOJ 1296 粉刷匠
1744 格子染色 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 有 n 条木板需要被粉 ...
- BZOJ 1296: [SCOI2009]粉刷匠 分组DP
1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...
- 2014.7.8模拟赛【笨笨当粉刷匠】|bzoj1296 [SCOI]粉刷匠
笨笨太好玩了,农田荒芜了,彩奖用光了,笨笨只好到处找工作,笨笨找到了一份粉刷匠的工作.笨笨有n条木板需要被粉刷.每条木板被分成m个格子,每个格子要被刷成红色或蓝色.笨笨每次粉刷,只能选择一条木板上一段 ...
- BZOJ 1296: [SCOI2009]粉刷匠( dp )
dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] ) ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...
- [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2184 Solved: 1259[Submit][Statu ...
- 1296: [SCOI2009]粉刷匠[多重dp]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1919 Solved: 1099[Submit][Statu ...
- BZOJ 1296(SCOI 2009) 粉刷匠
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2544 Solved: 1466 [Submit][Statu ...
- 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)
[SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...
随机推荐
- vue.js使用axios
使用axios的两种调用方式 1.安装axios $ cnpm install axios 2.在vue入口文件main.js中引入(推荐全局引入),或是在当前页面中引入(局部) import axi ...
- URL传值中文乱码的解决
使用 tomcat 时,相信大家都回遇到中文乱码的问题,具体表现为通过表单取得的中文数据为乱码. 一.初级解决方法 通过一番检索后,许多人采用了如下办法,首先对取得字符串按照 iso8859-1 进行 ...
- 北京Uber优步司机奖励政策(2月16日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- libevent学习六(Connect listeners )
创建与释放 //backlog需要查询平台说明,在linux2.2以后 backlog就变成了已完成连接但未accept的队列的最大值(原来是处于syn状态的,现在换成sysctl 控制的参数tc ...
- Adobe Photoshop CC2018最新教程+某宝店铺装修教程
PS免费教程,ps淘宝店铺装修教程.该资源为本人从某商网站重金买来,现免费分享给大家,下载地址:百度网盘,https://pan.baidu.com/s/127PjFbGwVVUVce1litHFsw
- ReadyAPI 教程和示例(二)
声明:如果你想转载,请标明本篇博客的链接,请多多尊重原创,谢谢! 本篇使用的 ReadyAPI版本是2.5.0 接上一篇: 4.修改SoapUI测试 本节将演示如何为测试用例添加测试步骤以及更改请求参 ...
- Appium最新的服务器初始化参数(Capability)【截止11月29日,后续最新的可以看github】
键 描述 值 automationName 自动化测试的引擎 Appium (默认)或者 Selendroid platformName 使用的手机操作系统 iOS, Android, 或者 Fire ...
- 蓝桥杯算法训练 区间k大数查询
算法训练 区间k大数查询 问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列长度. 第二行包含n个正整数,表示给定的序列. 第三个 ...
- Apache——SSL协议
SSL 协议既用到了公钥加密技术又用到了对称加密技术,对称加密技术虽然比公钥加密技术的速度快,可是公钥加密技术提供了更好的身份认证技术.SSL 的握手协议非常有效的让客户和服务器之间完成相互之间的身份 ...
- Halcon和visionPro的比较
很多朋友会问到visionpro和halcon这两款机器视觉软件,到底学哪个好呢,今天重码网就给大家讲一讲: 首先比较下两者的优缺点: halcon: 提供的图像算法要比Visionpro多,也就是说 ...