ARC072 D Alice&Brown 博弈论
题解:
题目大意:有2堆石子数分别为x, y的石子,你每次可以从中间的某一堆中取出2i个石子,扔掉i个,并把剩下的i个放到另一堆,无法操作的人就输了。
现在给定x,y,判断先手必赢还是先手必输。
表示这题推出了一个性质,,,然后,,,就没有然后了。
看题解还是比较妙的。
结论:如果$|x - y| <= 1$那么后手必赢,反之先手必赢。
证明:
假设现在有$|x - y| \le 1$,我们不妨设$x > y$,那么$y = x - k$.所以如果我们从x中拿出2i个石子,那么x,y将变为:
$x' = x - 2i$ $y' = x - k + i$
这时我们可以发现$y' - x' = -k + 3i$,因为i是非负的,而k因为$|x - y| \le 1$,所以$k \le 1$,所以3i的大小至少为3,而k最大为1,所以$y' - x'$至少为2,那么这个时候后手一定可以移动。
现在来考虑后手怎么动:
首先我们可以推出一个性质,当一开始的石子数为x , y时,先手取了一步变成了$x - 2i$和$y + i$,这个时候后手只需要从y中拿同样的2i个,就可以使得石子数变为$x - i$和$y - i$,而我们知道,两个数同时减去同一个数,它们的差是不会变化的,所以这个时候的$x'$和$y'$依然相差小于等于1,这就转化成了第一种情况
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define LL long long LL x, y;
void work()
{
scanf("%lld%lld", &x, &y);
if(abs(x - y) <= ) printf("Brown\n");
else printf("Alice\n");
} int main()
{
freopen("in.in", "r", stdin);
work();
fclose(stdin);
return ;
}
ARC072 D Alice&Brown 博弈论的更多相关文章
- AT2400 [ARC072B] Alice&Brown
通过打表后可以发现,当初始石头数 \(|X - Y| \le 1\) 时先手必败否则先手必胜. 我们考虑使用归纳证明这个结论,显然 \((1, 0), (1, 1)\) 时是成立的. 基于观察,我们可 ...
- 【AtCoder】ARC072
ARC072 C - Sequence 直接认为一个数是正的,或者第一个数是负的,每次将不合法的负数前缀和改成+1正数前缀和改成-1 #include <bits/stdc++.h> #d ...
- ARC072/ABC059
AtCoder Regular Contest 072 / Beginner Contest 059 Announcement <br > 猛然发现今天有一场AC.....然后..显示手残 ...
- AtCoder刷题记录
构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...
- Multiplication Game
Description Alice and Bob are in their class doing drills on multiplication and division. They quick ...
- hdu 3544 Alice's Game 博弈论
博弈论+二分! 后一人会尽量选前一人切小的一块切!! 代码如下: #include<iostream> #include<stdio.h> #define I1(x) scan ...
- zoj 3529 A Game Between Alice and Bob 博弈论
思路:每个数的SG值就是其质因子个数,在进行nim博弈 代码如下: #include<iostream> #include<cstdio> #include<cmath& ...
- hdu 4111 Alice and Bob 博弈论
这里有2种方法: 方法一:求SG函数 sg[i][j]:i表示1的个数,j表示合并操作的步数. 这共有4种操作: 1.消除一个1: 2.减掉一个1: 3.合并2个1: 4.把1合并到另外不是1中. 代 ...
- ZOJ 3529 A Game Between Alice and Bob(博弈论-sg函数)
ZOJ 3529 - A Game Between Alice and Bob Time Limit:5000MS Memory Limit:262144KB 64bit IO For ...
随机推荐
- Android Preference 设置偏好全攻略
Android 设置是每个App必不可小的东西,看似很简单,但是初学不熟悉的很花时间去研究,特别样式兼容方面,以及有自定义设置的需求,下面是对用法做一个总结 Preference结构 界面结构看下图 ...
- Selenium(Python)驱动Firefox浏览器
我的版本是Firefox Setup 52.7.0.exe+geckodriver-v0.15.0-win64.zip, 把驱动geckodriver.exe放到Python安装目录下, 也可以指定驱 ...
- 一句话描述 Java 设计模式
Java 设计模式 设计模式是对应于不同的应用目的的. 适配:将特定功能接口适配需求方 桥接:面向两个接口,无关接口的实现: 抽象化与实现化解耦,使得二者可以独立变化:例:笔与图形,笔可以画图 ...
- Spring Cloud(十):服务网关 Zuul(路由)【Finchley 版】
Spring Cloud(十):服务网关 Zuul(路由)[Finchley 版] 发表于 2018-04-23 | 更新于 2018-05-09 | 通过之前几篇 Spring Cloud 中 ...
- [leetcode-662-Maximum Width of Binary Tree]
Given a binary tree, write a function to get the maximum width of the given tree. The width of a tre ...
- php5.4以上运行yii框架出现问题的解决方法
Ubuntu Server 下安装 Mcrypt Php Extension http://blog.archean.me/2013/10/22/install-mcrypt-php-extensio ...
- 算法与数据结构实验题 6.3 search
★实验任务 可怜的 Bibi 刚刚回到家,就发现自己的手机丢了,现在他决定回头去搜索 自己的手机. 现在我们假设 Bibi 的家位于一棵二叉树的根部.在 Bibi 的心中,每个节点 都有一个权值 x, ...
- 使用cout进行格式化
以下内容摘自木缥缈的博客 使用cout进行格式化 ostream插入运算符将值转换为文本格式.在默认情况下,格式化值的方式如下. * 对于char值,如果它代表的是可打印字符,则将被作为一个字符显示在 ...
- 福大软工1816 · 第五次作业 - 结对作业2_map与unordered map的比较测试
测试代码: #include <iostream> using namespace std; #include <string> #include <windows.h& ...
- holoeverywhere修改actionbar背景
<style name="Holo.Theme.Light.MyActionBar" parent="Holo.Base.Theme.Light.DarkActio ...