~~~题面~~~

题解:

  题目大意:有2堆石子数分别为x, y的石子,你每次可以从中间的某一堆中取出2i个石子,扔掉i个,并把剩下的i个放到另一堆,无法操作的人就输了。

  现在给定x,y,判断先手必赢还是先手必输。

  表示这题推出了一个性质,,,然后,,,就没有然后了。

  看题解还是比较妙的。

  结论:如果$|x - y| <= 1$那么后手必赢,反之先手必赢。

  证明:

    假设现在有$|x - y| \le 1$,我们不妨设$x > y$,那么$y = x - k$.所以如果我们从x中拿出2i个石子,那么x,y将变为:

    $x' = x - 2i$   $y' = x - k + i$

    这时我们可以发现$y' - x' = -k + 3i$,因为i是非负的,而k因为$|x - y| \le 1$,所以$k \le 1$,所以3i的大小至少为3,而k最大为1,所以$y' - x'$至少为2,那么这个时候后手一定可以移动。

    现在来考虑后手怎么动:

    首先我们可以推出一个性质,当一开始的石子数为x , y时,先手取了一步变成了$x - 2i$和$y + i$,这个时候后手只需要从y中拿同样的2i个,就可以使得石子数变为$x - i$和$y - i$,而我们知道,两个数同时减去同一个数,它们的差是不会变化的,所以这个时候的$x'$和$y'$依然相差小于等于1,这就转化成了第一种情况

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define LL long long LL x, y;
void work()
{
scanf("%lld%lld", &x, &y);
if(abs(x - y) <= ) printf("Brown\n");
else printf("Alice\n");
} int main()
{
freopen("in.in", "r", stdin);
work();
fclose(stdin);
return ;
}

ARC072 D Alice&Brown 博弈论的更多相关文章

  1. AT2400 [ARC072B] Alice&Brown

    通过打表后可以发现,当初始石头数 \(|X - Y| \le 1\) 时先手必败否则先手必胜. 我们考虑使用归纳证明这个结论,显然 \((1, 0), (1, 1)\) 时是成立的. 基于观察,我们可 ...

  2. 【AtCoder】ARC072

    ARC072 C - Sequence 直接认为一个数是正的,或者第一个数是负的,每次将不合法的负数前缀和改成+1正数前缀和改成-1 #include <bits/stdc++.h> #d ...

  3. ARC072/ABC059

    AtCoder Regular Contest 072 / Beginner Contest 059 Announcement <br > 猛然发现今天有一场AC.....然后..显示手残 ...

  4. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

  5. Multiplication Game

    Description Alice and Bob are in their class doing drills on multiplication and division. They quick ...

  6. hdu 3544 Alice's Game 博弈论

    博弈论+二分! 后一人会尽量选前一人切小的一块切!! 代码如下: #include<iostream> #include<stdio.h> #define I1(x) scan ...

  7. zoj 3529 A Game Between Alice and Bob 博弈论

    思路:每个数的SG值就是其质因子个数,在进行nim博弈 代码如下: #include<iostream> #include<cstdio> #include<cmath& ...

  8. hdu 4111 Alice and Bob 博弈论

    这里有2种方法: 方法一:求SG函数 sg[i][j]:i表示1的个数,j表示合并操作的步数. 这共有4种操作: 1.消除一个1: 2.减掉一个1: 3.合并2个1: 4.把1合并到另外不是1中. 代 ...

  9. ZOJ 3529 A Game Between Alice and Bob(博弈论-sg函数)

    ZOJ 3529 - A Game Between Alice and Bob Time Limit:5000MS     Memory Limit:262144KB     64bit IO For ...

随机推荐

  1. Updating Homebrew... 长时间不动解决方法

    确保你已安装Homebrew 依次输入下面的命令(注意:不要管重置部分的命令,这里原作者贴出来.我也贴出来是以防需要重置的时候有参考操作命令) 替换brew.git: cd "$(brew ...

  2. 关于 Windows 10 字体安装目录的问题

    不知从什么时候开始,本人台式机的Win10系统在安装字体的时候并不是安装到C:\Windows\Fonts目录中,而是安装到%USERPROFILE%\AppData\Local\Microsoft\ ...

  3. C# 简单工厂

    如下: public static IList<T> Create<T>(Type type) { if (type == typeof(List<T>)) { r ...

  4. hdu1527取石子游戏(威佐夫博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  5. ISE 14.7安装教程最新版(Win10安装)——解决Win10安装完后打不开快捷方式的方法

    ISE 14.7安装教程最新版(Win10安装) Xilinx ISE是一款世界著名的硬件设计软件,它为设计流程的每一步都提供了直观的生产力增强工具,覆盖从系统级设计探索.软件开发和基于HDL硬件设计 ...

  6. 【转】unity 热更新思路和实现

    声明:本文介绍的热更新方案是我在网上搜索到的,然后自己修改了一下,相当于是借鉴了别人的思路,加工成了自己的,在此感谢无私分享经验的朋友们. 想要使用热更新技术,需要规划设计好资源比较策略,资源版本,确 ...

  7. appium启动APP配置参数:

    一.Android启动app   python启动脚本如下:   from appium import webdriver   desired_caps = {} desired_caps['plat ...

  8. [C++] Fucntions

    Statements A break statements terminate the nearest wile, do while, for or switch statement. A break ...

  9. OpenGL ES 2.0 -- 制作 3D 彩色旋转三角形 - 顶点着色器 片元着色器 使用详解

    最近开始关注OpenGL ES 2.0 这是真正意义上的理解的第一个3D程序 , 从零开始学习 . 案例下载地址 : http://download.csdn.net/detail/han120201 ...

  10. Xcode常见警告和错误

    Xcode 升级后,常常遇到的遇到的警告.错误,解决方法 从sdk3.2.5升级到sdk 7.1中间废弃了很多的方法,还有一些逻辑关系更加严谨了.1,警告:“xoxoxoxo”  is depreca ...