题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=2879

题目大意:

he[n]为小于n且满足x^2 = x (mod n)的个数

hehe[n] = He[1]*……*He[N]

解题思路:

1.证明p是素数时He[p]=2.

x^2=x(mod p)—->p|x(x-1).因为x<p所以p不整除x也不整除x-1.所以成立的情况下是x=1或者x=0.

He[p^k]=2,证明类似上面的

2.证明对于不同的两个素数p和q,He[p*q]=4=He[p]*He[q];

首先x=0和x=1是肯定成立的,

现在由x^2=x(mod p*q)

—>p*q|x(x-1)

假设x=k*p[k<q]

——>p*q|k*p(k*p-1)

——->q|k(k*p-1)

——->q|(k*p-1)  因为k<q  q是素数 所以gcd(k,q)=1

——->k*p+t*q=1

这里就变成了这个方程的解,由扩展欧几里得知,这个方程有解,但是k在[0,q-1]之内的解就一个,所以这里多一个解,同理设x=k*p又有一个解,所以x^2=x(mod p*q)有4个解(x=0 ,x=1 ,x=k*p, x=k*q)

—->He[p*q]=4=He[p]*He[q];

那么He[p1^r1*p2^r2*……*pk^rk]=2^k然后可以进一步算出HeHe只需要算n以内每个素数的倍数的个数.

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = +;
int prime[maxn];
bool is_prime[maxn];
int sieve(int n)//返回n以内素数的个数
{
int p = ;
for(int i = ; i <= n; i++)is_prime[i] = ;
is_prime[] = is_prime[] = ;
for(ll i = ; i <= n; i++)
{
if(is_prime[i])
{
prime[p++] = i;
for(ll j = i * i; j <= n; j += i)is_prime[j] = ;//这里涉及i*i,必须使用long long
}
}
return p;
}
ll pow(ll a, ll b, ll m)
{
ll ans = ;
a %= m;
while(b)
{
if(b & )ans = (ans % m) * (a % m) % m;
b /= ;
a = (a % m) * (a % m) % m;
}
ans %= m;
return ans;
}
int main()
{
int T;
cin >> T;
int tot = sieve(), n, m;
while(T--)
{
cin >> n >> m;
int cnt = ;
for(int i = ; i < tot && prime[i] <= n; i++)
{
cnt += n / prime[i];
}
cout<<pow(, cnt, m)<<endl;
}
return ;
}

hdu-2879 hehe---积性函数的更多相关文章

  1. 积性函数,线性筛入门 HDU - 2879

    HDU - 2879HeHe 题意:He[N]为[0,N−1]范围内有多少个数满足式子x2≡x (mod N),求HeHe[N]=He[1]×……×He[N] 我是通过打表发现的he[x]=2k,k为 ...

  2. HDU 1452 Happy 2004 (逆元+快速幂+积性函数)

    G - Happy 2004 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Subm ...

  3. HDU 1452 Happy 2004(因子和的积性函数)

    题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...

  4. HDU 1452 Happy 2004(因数和+费马小定理+积性函数)

    Happy 2004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  5. 【HDU 5382】 GCD?LCM! (数论、积性函数)

    GCD?LCM! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  6. 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)

    Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...

  7. Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...

  8. 2017 CCPC 杭州 HDU6265B 积性函数

    题目链接 http://acm.hdu.edu.cn/downloads/CCPC2018-Hangzhou-ProblemSet.pdf B题 数论题      h(n)=∑ d|n φ(d) × ...

  9. bzoj2693--莫比乌斯反演+积性函数线性筛

    推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...

  10. hdu1452 Happy 2004(规律+因子和+积性函数)

    Happy 2004 题意:s为2004^x的因子和,求s%29.     (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...

随机推荐

  1. 【c++】iostreeam中的类为何不可以直接定义一个无参对象呢

    缘起 #include <iostream> #include <fstream> #include <sstream> using namespace std; ...

  2. 最小化安装的redhat/centos安装gnome桌面

    因系统版本和语言环境不同,安装包的名字会有所差别 安装方式可以选择直接联网安装,也可以加载dvd镜像源安装,这里针对配置redhat/centos本地dvd的yum源做个记录: 1.复制 redhat ...

  3. 架构实战项目心得(四)(补):Maven settings.xml的所有标签详解

    文章内容较长,各位看客可以根据自己需要CTRL+F 直接定位到自己需要了解的地方哦~ <?xmlversion="1.0" encoding="UTF-8" ...

  4. jvm options

    http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html#Options Categories of J ...

  5. [android] 通过比对进行容器联动

    当中间容器变化之后,标题栏也要跟着变化 设计个比对依据: 抽象类BaseView中定义抽象方法,每个继承的View都必须实现,为自己的界面定义一个唯一的int常量,作为比对依据 降低容器之间的耦合度: ...

  6. Tips——App启动速度的优化与监控

    一.App的启动模式 冷启动:App点击启动前,它的进程不在系统里,需要系统新创建一个进程分配给它启动的情况.这是一次完整的启动过程. 热启动:App在冷启动后用户将App退后台,在App的进程还在系 ...

  7. BZOJ4698: Sdoi2008 Sandy的卡片(后缀数组 二分)

    题意 题目链接 Sol 不要问我为什么发两篇blog,就是为了骗访问量 后缀数组的也比较好想,先把所有位置差分,然后在height数组中二分就行了 数据好水啊 // luogu-judger-enab ...

  8. 51Nod1782 圣诞树

    传送门 我居然忘写题解啦!(记忆废) 总的来说这题就是道大数据结构……看我代码长度就知道了,真的是长得要死…… …… 这题的操作都是路径修改单点查询,因此可以树上差分,问题就变成了维护子树中的所有标记 ...

  9. js修改日期

    需求说明: (1)首先是input显示年月日时分格式时间,其中年月日实在本地时间基础上,加上后面联动值.小时默认08:00不变 (2)后面input内显示天数,右侧加减按钮,控制天数,天数确定后,前面 ...

  10. vue中全局引入bootstrap.css

    1.首先在官网上下载bootstrap的压缩包(必须是官网上下载的) 将压缩包解压后引入在项目文件夹下面.如下图所示: 2.在main.js中引入 import './assets/bootstrap ...