【单调队列】【P1776】宝物筛选
Description
终于,破解了千年的难题。小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎。但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物。看来小FF只能含泪舍弃其中的一部分宝物了……小FF对洞穴里的宝物进行了整理,他发现每样宝物都有一件或者多件。他粗略估算了下每样宝物的价值,之后开始了宝物筛选工作:小FF有一个最大载重为\(W\)的采集车,洞穴里总共有n种宝物,每种宝物的价值为\(v_i\),重量为\(w_i\),每种宝物有\(m_i\)件。小FF希望在采集车不超载的前提下,选择一些宝物装进采集车,使得它们的价值和最大。
Input
第一行为一个整数\(N\)和\(w\),分别表示宝物种数和采集车的最大载重。
接下来\(n\)行每行三个整数,其中第\(i\)行第一个数表示第\(i\)类品价值,第二个整数表示一件该类物品的重量,第三个整数为该类物品数量。
Output
输出仅一个整数\(ans\),表示在采集车不超载的情况下收集的宝物的最大价值。
Sample Input
4 20
3 9 3
5 9 1
9 4 2
8 1 3
Sample Output
47
Hint
\(1~\leq~n~\leq~100\)
\(1~\leq~w~\leq~40000\)
数据保证合法
Solution
多重背包问题。设\(f_{i,j}\)是前\(i\)个物品重量是\(j\)的最大价值。考虑转移。朴素方法在转移时枚举该物品使用多少个。由于物品个数与\(w\)同阶,所以时间复杂度是\(O(nm^2)\),其中\(m\)代表最大载重量。
考虑优化。
考虑对第\(i\)个物品,重量为\(j\)时只能从\(j~-~k~\times~w_i\)转移。其中\(w\)代表重量。由于是连续转移,所以被转移的状态一定是单调不降的。考虑使用单调队列优化。
按照\(j~Mod~w_i\)分类,同一类之间才能转移,维护一群单调队列。每次判断出队时把队首元素加上在这个位置应该加的价值再与当前元素比较。
while((front <= end) && ((frog[pos][que[end]]+(k-que[end])/b*a)) <= frog[pos][k]) --end;
这里\(k\)是当前枚举到的背包重量。\(a\)是价值,\(b\)是该物品的重量。
同时,也可以不选择该物品,所以枚举所有重量与从上一行继承进行转移。
for(rg int j=1;j<=w;++j) frog[cur][j]=mmax(frog[cur][j],frog[pos][j]);
代码如下
Code
#include<cstdio>
#define rg register
#define ci const int
#define cl const long long int
typedef long long int ll;
namespace IO {
char buf[90];
}
template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst=='-') x=-x;
}
template<typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<0) x=-x,putchar('-');
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
}
template<typename T>
inline T mmax(const T a,const T b) {if(a>b) return a;return b;}
template<typename T>
inline T mmin(const T a,const T b) {if(a<b) return a;return b;}
template<typename T>
inline T mabs(const T a) {if(a<0) return -a;return a;}
template<typename T>
inline void mswap(T &a,T &b) {
T temp=a;a=b;b=temp;
}
const int maxn = 110;
const int maxm = 500010;
int n,w,cur,pos=1,front,end,a,b,c,ans;
int frog[2][maxm],que[maxm];
int main() {
qr(n);qr(w);
for(rg int i=1;i<=n;++i) {
a=b=c=0;qr(a);qr(b);qr(c);
rg int upceil=b*c;
for(rg int j=0;j<b;++j) {
que[front=end=1]=j;
for(rg int k=j+b;k<=w;k+=b) {
while((front <= end) && ((k-que[front]) > upceil)) ++front;
while((front <= end) && ((frog[pos][que[end]]+(k-que[end])/b*a)) <= frog[pos][k]) --end;
que[++end]=k;
frog[cur][k]=frog[pos][que[front]]+(k-que[front])/b*a;
}
}
for(rg int j=1;j<=w;++j) frog[cur][j]=mmax(frog[cur][j],frog[pos][j]);
mswap(cur,pos);
}
for(rg int i=1;i<=w;++i) ans=mmax(ans,frog[pos][i]);
write(ans,'\n',true);
return 0;
}
Summary
在使用手写队列时,初始化\(que[front=end=1]=0\)。判断队列不为空的条件是\(front ~\leq~end\)
【单调队列】【P1776】宝物筛选的更多相关文章
- P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化
多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...
- 洛谷P1776 宝物筛选_NOI导刊2010提高(02)
P1776 宝物筛选_NOI导刊2010提高(02) 题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了, ...
- [luogu P1776] 宝物筛选 解题报告(单调队列优化DP)
题目链接: https://www.luogu.org/problemnew/show/P1776 题目: 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF ...
- 洛谷P1776 宝物筛选_NOI导刊2010提高(02)(多重背包,单调队列)
为了学习单调队列优化DP奔向了此题... 基础的多重背包就不展开了.设\(f_{i,j}\)为选前\(i\)个物品,重量不超过\(j\)的最大价值,\(w\)为重量,\(v\)为价值(蒟蒻有强迫症,特 ...
- 洛谷P1776 宝物筛选
一道很好的单调队列优化多重背包入门题 令\(v[i]\)表示重量,\(w[i]\)表示价格 ,\(c[i]\)表示最多可放的数量,不难推出朴素的转移方程如下: \(f[i][j]=max\{f[i-1 ...
- luogu||P1776||宝物筛选||多重背包||dp||二进制优化
题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...
- luogu P1776 宝物筛选_NOI导刊2010提高(02)
Sto flashhu orz flash太强啦 多重背包裸题(逃 使用压维大法,\(f_i\)为总重量为\(i\)时的答案 对于每种物品,记\(w\)为单个的重量,\(v\)为单个的价值,\(m\) ...
- P1776 宝物筛选_NOI导刊2010提高(02)
题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...
- P1776 宝物筛选_NOI导刊2010提高(02)(背包的二进制优化)
题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...
- 洛谷p1776宝物筛选
宝物筛选 多重背包问题 物品数目已知 可以枚举每个物品 当做01背包来做 不过会超时 此时需要二进制拆分来优化 分解成新的物品 再跑一遍01背包即可 //二进制拆分+01背包 //设f[j]表示前i件 ...
随机推荐
- Lua学习笔记(1): HelloWorld和数据类型
Lua是一个轻量级的脚本语言,由c语言编写,容易嵌入到应用中,深受游戏开发者的青睐 环境安装 选用SciTE作为lua的IDE 可以在github找到这个开源的软件 SciTE下载链接 安装好之后打开 ...
- n! 阶乘
其实1.2.3.4.6.7…都是可以不用考虑的,因此选择以5为迭代步数即可. 首先,这些数字都可以不用进行%5(对5取余数)运算,因此每次循环时可以直接将函数的count变量直接加1.其次,考虑25. ...
- vue移动音乐app开发学习(三):轮播图组件的开发
本系列文章是为了记录学习中的知识点,便于后期自己观看.如果有需要的同学请登录慕课网,找到Vue 2.0 高级实战-开发移动端音乐WebApp进行观看,传送门. 完成后的页面状态以及项目结构如下: 一: ...
- 深搜(DFS)与广搜(BFS)区别
最近做了不少的搜索题,时而用到DFS时而用到BFS,这里对两种搜索方法做一个总结. 广度优先搜索算法(Breadth-First-Search,缩写为 BFS),是一种利用队列实现的搜索算法.简单来说 ...
- 软工第三次作业——个人PSP
9.22--9.26本周例行报告 1.PSP(personal software process )个人软件过程. 类型 任务 预计时间 开始时间 结束时间 中断时间 实际用时 准备工作 学习重定向 ...
- JSON解析与序列化
JSON之所以流行,拥有与JavaScript类似的语法并不是全部原因.更重要的一个原因是,可以把JSON数据结构解析为有用的 JavaScript对象.与XML数据结构要解析成DOM文档而且从中提取 ...
- HDU 2114 Calculate S(n)
http://acm.hdu.edu.cn/showproblem.php?pid=2114 Problem Description Calculate S(n). S(n)=13+23 +33 +. ...
- Innodb 中 RR 隔离级别能否防止幻读?
问题引出 我之前的一篇博客 数据库并发不一致分析 有提到过事务隔离级别以及相应加锁方式.能够解决的并发问题. 标准情况下,在 RR(Repeatable Read) 隔离级别下能解决不可重复读(当行修 ...
- activemq控制面板里的NumberOfPendingMessages、MessagesEnqueued、MessagesDequeued含义
Number Of Consumers 消费者 这个是消费者端的消费者数量.Number Of Pending Messages 等待消费的消息 这个是当前未出队列的数量.可以理解为总接收数-总出队列 ...
- Mysql查询优化从入门到跑路(一)数据库与关系代数
1.怎样才算是数据库? ACID,是指在数据库管理系统中事务所具有的四个特性 1)原子性 2)一致性 3)隔离性 4)持久性 关系数据库,基于关系代 ...