Arithmancy is Draco Malfoy's favorite subject, but what spoils it for him is that Hermione Granger is in his class, and she is better than him at it. Prime numbers are of mystical importance in Arithmancy, and Lucky Numbers even more so. Lucky Numbers are those positive integers that have at least three distinct prime factors; 30 and 42 are the first two. Malfoy's teacher has given them a positive integer n, and has asked them to find the n-th lucky number. Malfoy would like to beat Hermione at this exercise, so although he is an evil git, please help him, just this once. After all, the know-it-all Hermione does need a lesson.

Input

The first line contains the number of test cases T. Each of the next T lines contains one integer n.

Output

Output T lines, containing the corresponding lucky number for that test case.

Constraints

1 <= T <= 20
1 <= n <= 1000

Example

Sample Input:
2
1
2 Sample Output:
30
42

题意:找第n个由至少三个不同素因子组成的数。

思路:n<=1000直接暴力打表预处理

/** @Date    : 2016-12-11-19.01
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include<bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; int pri[N];
int ans[10010];
int c = 0;
bool vis[N];
int prime()
{
MMF(vis);
for(int i = 2; i < N; i++)
{
if(!vis[i])
pri[c++] = i; for(int j = 0; j < c && pri[j]*i < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0)
break;
}
}
} int main()
{
prime();
int tot = 0;
for(int i = 0; i <= 10000; i++)
{
int t = i;
int cnt = 0;
for(int j = 0; j < c && pri[j]*pri[j] <= t; j++)
{
if(t % pri[j] == 0)
{
cnt++;
while(t % pri[j] == 0)
t /= pri[j];
}
}
if(t > 1)
cnt++;
if(cnt >= 3)
ans[tot++] = i;
}
int T;
scanf("%d", &T);
while(T--)
{
int n;
scanf("%d", &n);
printf("%d\n", ans[n - 1]);
}
return 0;
}

SPOJ AMR11E Distinct Primes 基础数论的更多相关文章

  1. SPOJ 10232. Distinct Primes

    Arithmancy is Draco Malfoy's favorite subject, but what spoils it for him is that Hermione Granger i ...

  2. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  3. 【SPOJ】Distinct Substrings(后缀自动机)

    [SPOJ]Distinct Substrings(后缀自动机) 题面 Vjudge 题意:求一个串的不同子串的数量 题解 对于这个串构建后缀自动机之后 我们知道每个串出现的次数就是\(right/e ...

  4. 【SPOJ】Distinct Substrings/New Distinct Substrings(后缀数组)

    [SPOJ]Distinct Substrings/New Distinct Substrings(后缀数组) 题面 Vjudge1 Vjudge2 题解 要求的是串的不同的子串个数 两道一模一样的题 ...

  5. LightOJ1214 Large Division 基础数论+同余定理

    Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...

  6. HDU-1576 A/B 基础数论+解题报告

    HDU-1576 A/B 基础数论+解题报告 题意 求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973) (我们给定的A必能被B整除,且gcd(B,9973) = 1). 输入 数据 ...

  7. 【SPOJ】Distinct Substrings

    [SPOJ]Distinct Substrings 求不同子串数量 统计每个点有效的字符串数量(第一次出现的) \(\sum\limits_{now=1}^{nod}now.longest-paren ...

  8. RSA算法原理——(2)RSA简介及基础数论知识

    上期为大家介绍了目前常见加密算法,相信阅读过的同学们对目前的加密算法也算是有了一个大概的了解.如果你对这些解密算法概念及特点还不是很清晰的话,昌昌非常推荐大家可以看看HTTPS的加密通信原理,因为HT ...

  9. SPOJ 694. Distinct Substrings (后缀数组不相同的子串的个数)转

    694. Distinct Substrings Problem code: DISUBSTR   Given a string, we need to find the total number o ...

随机推荐

  1. sigsuspend

    1)头文件:#include <signal.h> 2)一个保护临界区代码的错误实例:(sigprocmask()和pause()实现) #include <unistd.h> ...

  2. iOS- Exception异常处理

    1.Exception 前言 在iOS里对异常的处理及捕获,并没有其它语言里那么常见,相信很多iOS程序员都知道,更多的时候是对内存的的检测与分析,检测相关内存方面的问题. 而在app闪退并不是因为内 ...

  3. Linux防火墙iptables学习

    http://blog.chinaunix.net/uid-9950859-id-98277.html 要在网上传输的数据会被分成许多小的数据包,我们一旦接通了网络,会有很多数据包进入,离开,或者经过 ...

  4. PAT 甲级 1128 N Queens Puzzle

    https://pintia.cn/problem-sets/994805342720868352/problems/994805348915855360 The "eight queens ...

  5. java中sql语句能不能加分号的问题?

    一.原因  在程序运行中,当执行sql后总是报无效字符错误:但是把程序放在pl/sql中执行又没有错误.让我很纳闷!于是我开始查找资料,然后我终于发现了问题. 二.问题剖析 原来在程序中:如果你在程序 ...

  6. 【Python】python之set

    阅读目录 一.set集合介绍 二.集合的方法 1.s.add()添加元素 3.s.copy()浅拷贝 4.s.difference(b) 5.s.difference_update(b) 6.s.di ...

  7. 去除安卓手机select下拉框默认箭头

    -webkit-appearance: listbox;

  8. Python文件传输模块ftplib

    ftplib是基于FTP协议实现的一个Python模块 from ftplib import FTP # 创建一个FTP连接对象 ftp = FTP() #[ 当带有参数时,即:ftp = FTP(h ...

  9. python中深copy,浅copy

    版权声明:本文为博主原创文章,未经博主允许不得转载. >>> mylist1 = [1, 2, 3, 4] >>> myl = mylist1 >>&g ...

  10. CentOS 服务ftp(vsftpd)

    1.检查是否已经安装vsftpd yum list installed | grep vsftpd 2.安装vsftpd yum install -y vsftpd 3.检查vsftpd system ...