d(x)表示x的约数个数,让你求(l,r<=10^12,r-l<=10^6,k<=10^7)

#include<cstdio>
using namespace std;
#define MOD 998244353ll
#define MAXP 1000100
typedef long long ll;
ll x,y;
int T,K;
bool isNotPrime[MAXP+10];
int num_prime,prime[MAXP+10];
void shai()
{
for(long i = 2 ; i < MAXP ; i ++)
{
if(! isNotPrime[i])
prime[num_prime ++]=i;
for(long j = 0 ; j < num_prime && i * prime[j] < MAXP ; j ++)
{
isNotPrime[i * prime[j]] = 1;
if( !(i % prime[j]))
break;
}
}
}
ll b[1000010],a[1000010];
int main(){
scanf("%d",&T);
shai();
for(;T;--T){
scanf("%lld%lld%d",&x,&y,&K);
for(ll i=x;i<=y;++i){
a[i-x+1ll]=i;
b[i-x+1ll]=1;
}
for(int i=0;i<num_prime;++i){
ll t=x/(ll)prime[i]*(ll)prime[i]+(ll)(x%(ll)prime[i]!=0)*(ll)prime[i];
for(ll j=t;j<=y;j+=(ll)prime[i]){
int cnt=0;
while(a[j-x+1ll]%(ll)prime[i]==0){
a[j-x+1ll]/=(ll)prime[i];
++cnt;
}
b[j-x+1ll]=(b[j-x+1ll]*(((ll)cnt*(ll)K%MOD+1ll)%MOD))%MOD;
}
}
ll ans=0;
for(ll i=x;i<=y;++i){
if((a[i-x+1ll]>1ll)){
b[i-x+1ll]=(b[i-x+1ll]*((ll)K+1ll))%MOD;
}
ans=(ans+b[i-x+1ll])%MOD;
}
printf("%lld\n",ans);
}
return 0;
}

【线性筛】【质因数分解】【约数个数定理】hdu6069 Counting Divisors的更多相关文章

  1. 【线性筛】【筛法求素数】【约数个数定理】URAL - 2070 - Interesting Numbers

    素数必然符合题意. 对于合数,如若它是某个素数x的k次方(k为某个素数y减去1),一定不符合题意.只需找出这些数. 由约数个数定理,其他合数一定符合题意. 就从小到大枚举素数,然后把它的素数-1次方都 ...

  2. 【搜索】【约数个数定理】[HAOI2007]反素数ant

    对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数. 所以,n以内的反质数即为不超过n的 ...

  3. hdu1492(约数个数定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...

  4. 【FZYZOJ】数论课堂 题解(约数个数定理)

    前言:想了两个小时orz,最后才想到要用约数个数定理…… ------------- 题目大意: 给定$n,q,A[1],A[2],A[3]$ 现有$A[i]=(A[i-1]+A[i-2]+A[i-3 ...

  5. hdu6069 Counting Divisors 晒区间素数

    /** 题目:hdu6069 Counting Divisors 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意:求[l,r]内所有数的k次方 ...

  6. HDU6069:Counting Divisors(因子数统计|区间筛)

    题意 计算\(\sum_{i=l}^kd(i^k)(d_i代表i的因子数)\) 分析 比赛搞了3个小时都没搞出来,有两个思维上的trick 1.要先遍历素数,再遍历[L,R],而不是枚举每个数,然后对 ...

  7. 2017 Multi-University Training Contest - Team 4 hdu6069 Counting Divisors

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6069 题目: Counting Divisors Time Limit: 10000/5000 ...

  8. 【区间筛】2017多校训练四 HDU6069 Counting Divisors

    http://acm.hdu.edu.cn/showproblem.php?pid=6069 [题意] 给定l,r,k,求 d(n)是n的因子个数 [思路] [Accepted] #include&l ...

  9. 2017 Multi-University Training Contest - Team 4——HDU6069&&Counting Divisors

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069 题目意思:首先解释一下d[n]这个函数表示n有多少个因子,百度一下可以知道这个函数是一个非完全积 ...

随机推荐

  1. bzoj 3453 数论

    首先我们知道对于f(x)来说,它是一个k次的多项式,那么f(x)的通项公式可以表示成一个k+1次的式子,且因为f(x)没有常数项,所以我们设这个式子为 f(x)=Σ(a[i]*x^i) (1<= ...

  2. Eureka服务下线(Cancel)源码分析

    Cancel(服务下线) 在Service Provider服务shut down的时候,需要及时通知Eureka Server把自己剔除,从而避免其它客户端调用已经下线的服务,导致服务不可用. co ...

  3. sqlmap参数说明

    --delay 设置每隔几秒测试一次注入 --safe-url 设置sqlmap要访问的正常url --safe-freq 设置每测试多少条注入语句后才去访问safe-url --code 设置能正常 ...

  4. Perl6 Bailador框架(3):路径匹配

    use v6; use Bailador; =begin pod 注意的是, 当/:one设置时 虽然你有/admin或/about, 但这个/:one不会跟现有的匹配 只跟没有的匹配: 也就是说, ...

  5. Java21个基础知识点

    类装载器就是寻找类的字节码文件,并构造出类在JVM内部表示的对象组件.在Java中,类装载器把一个类装入JVM中,要经过以下步骤: (1) 装载:查找和导入Class文件: (2) 链接:把类的二进制 ...

  6. 10.异步SRAM的FPGA读写操作

    异步SRAM:正如其名,不是与特定的时钟信号同步运行,而是根据输入信号的状态运行的.因为没有信号表明读取时已确定了有效数据,也没有信号表明写入时已接收到数据,所以,需要获取制造商的数据手册,根据时序图 ...

  7. Mongo 配置文件 [www]

    Mongo 配置文件  [www] http://blog.chinaunix.net/uid-25206403-id-3510934.html mongodb 安装使用 http://blog.si ...

  8. python的IDLE界面回退代码语句

    Alt+P回退到IDLE中之前输入的代码语句 Alt+N可以移至下一个代码语句

  9. javascript 常用DOM操作整理

    .选取了DOM操作中实用并常用的部分,省略了实用但有明显兼容性的部分2.DOM属性和方法的类型归属可能并不完全准确3.某些一般兼容性和特点做了标识(主要是ie8-9上下) 节点类型 节点类型 节点值 ...

  10. android studio 64位手机+Fresco引起的在arm64位机器上找不到对应的so库

    我们的程序在32位机器上没有问题,有一天公司采购了一台魅族MX5 MTK的64位处理器上我们的应用报错了 "nativeLibraryDirectories=[/data/app/com.l ...