HDU 5552 Bus Routes(2015合肥现场赛A,计数,分治NTT)
题意 给定n个点,任意两点之间可以不连边也可以连边。如果连边的话可以染上m种颜色。
求最后形成的图,是一个带环连通图的方案数。
首先答案是n个点的图减去n个点能形成的树。
n个点能形成的树的方案数比较好求,根据prufer序列可以知道n个点形成的无根树的个数为$n^{n-2}$
那么现在问题变成求n个点形成的连通图的个数。
图有连通和不连通的,那么就是图的总数减去不连通的图的总数。
图的总数很简单,$m^{\frac{n(n-1)}{2}}$,那么现在要求不连通的图的总数。
设$f(n)$为$n$个点的不连通的图的总数
$f(n) = ∑f(i) * C(n - 1, i - 1) * f(n - i)$,$i$从$1$到$n-1$。
这是一个卷积的形式,可以分治NTT来求,就可以了。
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define fi first
#define se second
#define MP make_pair typedef long long LL; const LL G = 106;
const LL mod = 152076289;
const LL N = 4e4 + 10; int T;
int ca = 0; LL x1[N], x2[N];
LL ans;
LL n, m;
LL f[N], g[N], h[N];
LL c[N], fac[N], ifac[N]; LL Pow(LL a, LL b){
LL ret = 1;
while (b){
if (b & 1) ret = (ret * a) % mod;
a = (a * a) % mod;
b >>= 1;
}
return ret;
} void change (LL *y, int len){
int i, j, k;
for (i = 1, j = len / 2; i < len - 1; i++) {
if (i < j) swap(y[i], y[j]);
k = len / 2;
while (j >= k) {
j -= k;
k /= 2;
}
if (j < k) j += k;
}
} void ntt (LL *y, int len, int on) {
change (y, len);
int id = 0;
for(int h = 2; h <= len; h <<= 1) {
id++;
LL wn = Pow (G, (mod - 1) / (1<<id));
for(int j = 0; j < len; j += h) {
LL w = 1;
for(int k = j; k < j + h / 2; k++) {
LL u = y[k] % mod;
LL T = w * (y[k + h / 2] % mod) % mod;
y[k] = (u + T) % mod;
y[k + h / 2] = ((u - T) % mod + mod) % mod;
w = w * wn % mod;
}
}
}
if (on == -1){
for (int i = 1; i < len / 2; i++)
swap (y[i], y[len - i]);
LL inv = Pow(len, mod - 2);
for(int i = 0; i < len; i++)
y[i] = y[i] % mod * inv % mod;
}
} void solve(int l, int r){
if (l == r){
f[l] += g[l];
f[l] %= mod;
return;
} int mid = (l + r) >> 1;
solve(l, mid);
int len = 1;
while (len <= r - l + 1) len <<= 1;
rep(i, 0, len - 1) x1[i] = x2[i] = 0; rep(i, l, mid) x1[i - l] = f[i] * ifac[i - 1] % mod;
rep(i, 1, r - l) x2[i - 1] = g[i] * ifac[i] % mod; ntt(x1, len, 1);
ntt(x2, len, 1);
rep(i, 0, len - 1) x1[i] = x1[i] * x2[i] % mod;
ntt(x1, len, -1);
rep(i, mid + 1, r){
f[i] -= x1[i - l - 1] % mod * fac[i - 1] %mod;
(f[i] += mod) %= mod;
}
solve(mid + 1, r);
} int main(){ fac[0] = 1;
rep(i, 1, N - 1) fac[i] = fac[i - 1] * i % mod;
ifac[N - 1] = Pow(fac[N - 1], mod - 2);
dec(i, N - 2, 0) ifac[i] = ifac[i + 1] * (i + 1) % mod; scanf("%d", &T);
while (T--){
scanf("%lld%lld", &n, &m);
memset(f, 0, sizeof f);
rep(i, 1, n) g[i] = Pow(m + 1, 1ll * i * (i - 1) / 2);
solve(1, n);
ans = (f[n] - Pow(n, n - 2) * Pow(m, n - 1) % mod + mod) % mod;
printf ("Case #%d: %lld\n", ++ca, ans);
} return 0;
}
HDU 5552 Bus Routes(2015合肥现场赛A,计数,分治NTT)的更多相关文章
- hdu 5552 Bus Routes
hdu 5552 Bus Routes 考虑有环的图不方便,可以考虑无环连通图的数量,然后用连通图的数量减去就好了. 无环连通图的个数就是树的个数,又 prufer 序我们知道是 $ n^{n-2} ...
- HDU 5552 Bus Routes(NTT+分治)
题意 给定 \(n\) 个点,任意连边,每条边有 \(m\) 种颜色可选,求带环连通图的方案数. \(1\leq n\leq 10000\) \(1\leq m < 2^{31}\) 思路 直接 ...
- HDU 4816 Bathysphere (2013长春现场赛D题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4816 2013长春区域赛的D题. 很简单的几何题,就是给了一条折线. 然后一个矩形窗去截取一部分,求最 ...
- HDU 5531 Rebuild (2015长春现场赛,计算几何+三分法)
Rebuild Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total S ...
- HDU 5510 Bazinga (2015沈阳现场赛,子串判断)
Bazinga Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- HDU 5512 Pagodas (2015沈阳现场赛,找规律+gcd)
Pagodas Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- hdu 5493 (2015合肥网赛) Queue
题目;http://acm.hdu.edu.cn/showproblem.php?pid=5493 题目大意,t组数据,n个人,n行每行分别是人的身高和这个人的左边或右边比他高的人的个数,输出符合条件 ...
- hdu 5491(2015合肥网赛)The Next
题目;http://acm.hdu.edu.cn/showproblem.php?pid=5491 题意就是,T组测试数据.然后L,S1,S2.L的二进制中有x个1,x满足 S1<=x< ...
- 2015合肥网络赛 HDU 5489 Removed Interval LIS+线段树(树状数组)
HDU 5489 Removed Interval 题意: 求序列中切掉连续的L长度后的最长上升序列 思路: 从前到后求一遍LIS,从后往前求一遍LDS,然后枚举切开的位置i,用线段树维护区间最大值, ...
随机推荐
- webpack插件url-loader使用规范
其实说到性能优化,他的范围太广了,今天我们就只聊一聊通过webpack配置减少http请求数量这个点吧. 简单说下工作中遇到的问题吧,我们做的一个项目中首页用了十多张图片,每张图片都是一个静态资源,所 ...
- Matlab 工具箱介绍
Toolbox工具箱 序号 工具箱 备注 数学.统计与优化 1 Symbolic Math Toolbox 符号数学工具箱 2 Partial Differential Euqation Toolbo ...
- MyBatis框架的使用及源码分析(一) 配置与使用
我们先来看一个例子,简单的了解一下mybatis的mapper接口方式的使用. package org.mybatis.spring.sample; import org.apache.ibatis. ...
- asp.net 文件上传,大文件上传。
新建一个asp.net页面,在工具栏里拖入 FileUpload 上传控件.一个按钮 Button ! ! ! 进入Button事件 //----------------------- ...
- Druid连接池及监控在spring中的配置
Druid连接池及监控在spring配置如下: <bean id="dataSource" class="com.alibaba.druid.pool.DruidD ...
- 【Foreign】光 [莫比乌斯反演]
光 Time Limit: 10 Sec Memory Limit: 128 MB Description 天猫有一个长方形盒子,长宽分别为A,B. 这个长方形盒子的内壁全部是镜面. 天猫在这个盒子 ...
- 【BZOJ】1610: [Usaco2008 Feb]Line连线游戏
[算法]计算几何 [题解]计算所有斜率排序去重. 实数判断相等用fabs(...)≤eps. ★斜率题一定要注意斜率不存在的情况!!! 其实我觉得这份代码可以hack的…… #include<c ...
- 基本控件文档-UILabel属性---iOS-Apple苹果官方文档翻译
本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址 //转载请注明出处--本文永久链接:http://www.cnblogs.com/ ...
- Everything Has Changed(HDU6354+圆交+求周长)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6354 题目: 题意:用一堆圆来切割一个圆心为原点,半径为R的圆A,问切割完毕后圆A外围剩余部分的周长( ...
- vue-实现倒计时功能
JavaScript 创建一个 countdown 方法,用于计算并在控制台打印距目标时间的日.时.分.秒数,每隔一秒递归执行一次. msec 是当前时间距目标时间的毫秒数,由时间戳相减得到,我们将以 ...