BZOJ 4939 [Ynoi2016]掉进兔子洞(莫队+bitset)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=4939
【题目大意】
给出一个数列,每个询问给出三个区间,问除去三个区间共有的数字外,
还剩下几个数字,注意删去的是共有的数字个数,不是数字种类,统计时候也一样
【题解】
首先,答案为区间长度和减去区间并数字个数和的三倍。
所以题目转化为求区间并。很显然在开始对数据可以进行离散化。
考虑每个数字只出现一次的情况,我们可以用bitset来统计区间某个数字是否存在,
莫队处理查询每个区间,保存其bitset的值,最后求交即可,
现在考虑每个数字出现多次的情况,
我们发现经过离散的数据之间空位数量恰好可以用来标出现多次的数据,
比如1 4 4 9 9,离散后为 1 2 2 4 4,
我们可以将多出来的2标在3位置,4标在5位置,那么就可以用bitset统计了。
- Me : 询问区间存不下怎么办?
- Claris :将询问分批进行处理,单次处理25000个询问
- Me : 超时了欸……
- Claris : 这题卡常数,要手写bitset.
- Me : 你的代码为什么有6.7k?
- Claris :我分出现一次,两次和跟多次讨论
- Me : 我……还是咸鱼吧……
【代码】
#include <cstdio>
#include <algorithm>
#include <bitset>
#include <cmath>
using namespace std;
typedef unsigned long long ULL;
const int N=100010,M=N<<2;
int limit,n,m,pos[N],a[N],cnt[N],Ans[N],mark[N];
struct Q{
int l,r,id;
friend bool operator < (const Q &a,const Q &b){
return pos[a.l]<pos[b.l]||(pos[a.l]==pos[b.l]&&a.r<b.r);
}
}ask[M];
int read(int &x){
int f=1;char ch=getchar();x=0;
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
x*=f;
}
int disc[N];
int remark(int x){
int l=1,r=n,res=0;
while(l<=r){
int mid=(l+r)>>1;
if(disc[mid]<x)l=mid+1;
else res=mid,r=mid-1;
}return res;
}
const int B=1567,K=25000;
ULL v[B],f[K+3][B];
int u[65537],tmp,U;
void flip(int x){v[x>>6]^=1ULL<<(x&63);}
void Copy(ULL*a){
int i=0;
for(;i+13<=U;i+=14){
for(int j=0;j<14;j++)a[i+j]=v[i+j];
}for(;i<=U;i++)a[i]=v[i];
}
void And(ULL*a){
int i=0;
for(;i+13<=U;i+=14){
for(int j=0;j<14;j++)a[i+j]&=v[i+j];
}for(;i<=U;i++)a[i]&=v[i];
}
void popcount(ULL x){tmp+=u[x&65535]+u[x>>16&65535]+u[x>>32&65535]+u[x>>48];}
int count(ULL*a){
int i=tmp=0;
for(;i+13<=U;i+=14){
for(int j=0;j<14;j++)popcount(a[i+j]);
}for(;i<=U;i++)popcount(a[i]);
return tmp;
}
void init(){for(int i=1;i<65536;i++)u[i]=u[i>>1]+(i&1);}
int main(){
read(n); read(m);
U=n>>6; init();
limit=(int)sqrt(n+0.5);
for(int i=1;i<=n;i++)read(a[i]),disc[i]=a[i],pos[i]=(i-1)/limit+1;
sort(disc+1,disc+n+1);
for(int i=1;i<=n;i++)a[i]=remark(a[i]);
//for(int i=1;i<=n;i++)printf("%d\n",a[i]);
int pos=0,l=1,r=0;
while(pos<m){
int tot=0;
for(int i=1;i<=25000&&i+pos<=m;i++){
tot+=3;
Ans[i]=0;
mark[i]=0;
read(ask[i*3-2].l); read(ask[i*3-2].r); ask[i*3-2].id=i;
read(ask[i*3-1].l); read(ask[i*3-1].r); ask[i*3-1].id=i;
read(ask[i*3].l); read(ask[i*3].r); ask[i*3].id=i;
Ans[i]+=ask[i*3-2].r-ask[i*3-2].l+1;
Ans[i]+=ask[i*3-1].r-ask[i*3-1].l+1;
Ans[i]+=ask[i*3].r-ask[i*3].l+1;
}sort(ask+1,ask+tot+1);
for(int i=1;i<=tot;i++){
for(;r<ask[i].r;r++){flip(a[r+1]+cnt[a[r+1]]);cnt[a[r+1]]++;}
for(;l>ask[i].l;l--){flip(a[l-1]+cnt[a[l-1]]);cnt[a[l-1]]++;}
for(;l<ask[i].l;l++){cnt[a[l]]--;flip(a[l]+cnt[a[l]]);}
for(;r>ask[i].r;r--){cnt[a[r]]--;flip(a[r]+cnt[a[r]]);}
if(mark[ask[i].id])And(f[ask[i].id]);
else Copy(f[ask[i].id]),mark[ask[i].id]=1;
}tot/=3;
for(int i=1;i<=tot;i++)printf("%d\n",Ans[i]-3*count(f[i]));
pos+=tot;
}return 0;
}
BZOJ 4939 [Ynoi2016]掉进兔子洞(莫队+bitset)的更多相关文章
- BZOJ 4939: [Ynoi2016]掉进兔子洞(莫队+bitset)
传送门 解题思路 刚开始想到了莫队+\(bitset\)去维护信息,结果发现空间不太够..试了各种奇技淫巧都\(MLE\),最后\(\%\)了发题解发现似乎可以分段做..这道题做法具体来说就是开\(3 ...
- BZOJ.4939.[Ynoi2016]掉进兔子洞(莫队 bitset 分组询问)
BZOJ 洛谷 删掉的数即三个区间数的并,想到bitset:查多个区间的数,想到莫队. 考虑bitset的每一位如何对应每个数的不同出现次数.只要离散化后不去重,每次记录time就可以了. 但是如果对 ...
- [Luogu 4688] [Ynoi2016]掉进兔子洞 (莫队+bitset)
[Luogu 4688] [Ynoi2016]掉进兔子洞 (莫队+bitset) 题面 一个长为 n 的序列 a.有 m 个询问,每次询问三个区间,把三个区间中同时出现的数一个一个删掉,问最后三个区间 ...
- BZOJ4939: [Ynoi2016]掉进兔子洞(莫队 bitset)
题意 题目链接 一个长为 n 的序列 a. 有 m 个询问,每次询问三个区间,把三个区间中同时出现的数一个一个删掉,问最后三个区间剩下的数的个数和,询问独立. 注意这里删掉指的是一个一个删,不是把等于 ...
- 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解
题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...
- luogu P4688 [Ynoi2016]掉进兔子洞 bitset 莫队
题目链接 luogu P4688 [Ynoi2016]掉进兔子洞 题解 莫队维护bitset区间交个数 代码 // luogu-judger-enable-o2 #include<cmath&g ...
- 【洛谷 P4688】 [Ynoi2016]掉进兔子洞(bitset,莫队)
题目链接 第一道Ynoi 显然每次询问的答案为三个区间的长度和减去公共数字个数*3. 如果是公共数字种数的话就能用莫队+bitset存每个区间的状态,然后3个区间按位与就行了. 但现在是个数,bits ...
- bzoj千题计划320:bzoj4939: [Ynoi2016]掉进兔子洞(莫队 + bitset)
https://www.lydsy.com/JudgeOnline/problem.php?id=4939 ans= r1-l1+1 + r2-l2+1 +r3-l3+1 - ∑ min(cnt1[i ...
- BZOJ4939 Ynoi2016掉进兔子洞(莫队+bitset)
容易发现要求三个区间各数出现次数的最小值.考虑bitset,不去重离散化后and一发就可以了.于是莫队求出每个区间的bitset.注意空间开不下,做多次即可.输出的东西错了都能调一年服了我了. #in ...
随机推荐
- UIScrollView---iOS-Apple苹果官方文档翻译
本系列所有文章,链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址(2013年12月29日更新版) //转载请注明出处--本文永久链接:http://www ...
- JQuery-Ajax后台提交数据与获取数据 Java代码
function jqajax(){ var urlName = $("#urlName").val(); var urla = $("#url").val() ...
- js_数组去重效率对比
学习javascript已经快两年了,也不知道到了什么程度了. 说说我对javascript的理解,在电脑的世界里,只有数据. 数组,对象,字符串.对这些数据进行操作就可以完成很多业务逻辑,和页面的交 ...
- Python【模块】importlib,requests
内容概要: 模仿django中间件的加载方式 importlib模块 requests模块 rsplit() 用实际使用的理解来解释两个模块 importlib模块 ...
- 日常开发技巧:使用notify-send发送通知
背景 在终端执行一些需要较长时间的命令时,会切换到别的界面.但为了知道是否执行完成,需要时不时地切换过去看一眼.很麻烦. 解决方式 为了减少这种麻烦,可以使用notify-send,发送桌面通知.no ...
- 使用UpdatePanel时FileUpload失效的问题
出处:http://www.cnblogs.com/caicainiao/archive/2010/12/08/1900377.html 1.使用UpdatePanel后,FileUpload的Has ...
- python多进程处理数据
当我们处理大规模数据如ImageNet的时候,单进程显得很吃力耗时,且不能充分利用多核CPU计算机的资源.因此需要使用多进程对数据进行并行处理,然后将结果合并即可.以下给出的是多进程处理的demo代码 ...
- tomcat远程调试参数备忘
tomcat远程调试,启动时添加参数: -server -Xdebug -Xnoagent -Djava.compiler=NONE -Xrunjdwp:transport=dt_socket,ser ...
- VMware无法识别USB设备
VMware虚拟机开始还能识别USB设备/U盘,突然就不行了,在网上找了好久,提供的方法大致如下: 1. 首先Ctrl+R启动运行,输入services.msc,找到一个VMware USB dr ...
- request.getRemoteAddr() 获取的值为0:0:0:0:0:0:0:1的原因及解决办法
问题: 在近期开发的javaweb项目中,需要记录登录时的电脑ip地址和主机名,通过request.getRemoteAddr()和request.getRemoteHost()得到的值都是0:0:0 ...