Bzoj4016/洛谷P2993 [FJOI2014] 最短路径树问题(最短路径问题+长链剖分/点分治)
题面
题解
首先把最短路径树建出来(用$Dijkstra$,没试过$SPFA$$\leftarrow$它死了),然后问题就变成了一个关于深度的问题,可以用长链剖分做,所以我们用点分治来做(滑稽)。
有一点要说,这一题数据比较水,如果不用字典序的话,也可以过。如何建立字典序呢?其实我们从$1$号节点开始遍历路径树(不是最短路径树),令一个点的第一关键字是点权,如果点权相等就按照编号大小为第二关键字,维护一个二元组就好了。
点分治时记两个数组$S[i]$和$num[i]$,表示经过$i$个点的路径最大是多少以及在这个情况下有多少条路径。
之前找重心调了好久。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <iostream>
using std::pair; using std::sort;
using std::priority_queue;
using std::vector; using std::greater;
typedef long long ll;
typedef pair<int, int> pii;
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
const int N = 3e4 + 10, Inf = 1 << 30;
int n, m, k, from[N], dist[N], MX, tot;
int cnt, to[N << 1], nxt[N << 1], dis[N << 1];
bool vis[N];
vector<pii> G[N]; priority_queue< pii, vector<pii>, greater<pii> > q;
void addEdge(int u, int v, int w) {
to[++cnt] = v, nxt[cnt] = from[u], dis[cnt] = w, from[u] = cnt;
}
void dijk(int s) {
memset(dist, 0x7777777f, sizeof dist);
dist[s] = 0, q.push((pii){0, s});
while(q.size()) {
int u = q.top().second; q.pop();
if(vis[u]) continue; vis[u] = true;
for(int i = 0; i < G[u].size(); ++i) {
int v = G[u][i].first, w = G[u][i].second + dist[u];
if(dist[v] > w) dist[v] = w, q.push((pii){dist[v], v});
}
}
}
void init(int u) {
vis[u] = 1;
for(int i = 0; i < G[u].size(); ++i) {
int v = G[u][i].first, w = G[u][i].second;
if(vis[v] || w + dist[u] != dist[v]) continue;
addEdge(u, v, w), addEdge(v, u, w), init(v);
}
}
int Size, tmp, p, siz[N], maxnow, S[N], num[N];
inline void upt(int &a, int b) { if(a < b) a = b; }
void getrt(int u, int f) {
int max_part = 0; siz[u] = 1;
for(int i = from[u]; i; i = nxt[i]) {
int v = to[i]; if(vis[v] || v == f) continue;
getrt(v, u); siz[u] += siz[v];
upt(max_part, siz[v]);
} upt(max_part, Size - siz[u]);
if(max_part < tmp) p = u, tmp = max_part;
}
void calc(int u, int f, int now) {
upt(maxnow, now);
if(now == k - 1) {
if(dist[u] == MX) ++tot;
else if(dist[u] > MX) MX = dist[u], tot = 1;
return ;
}
int nowans = -1;
if(S[k - 1 - now] != -1) nowans = dist[u] + S[k - 1 - now];
if(nowans == MX) tot += num[k - 1 - now];
else if(nowans > MX) MX = nowans, tot = num[k - 1 - now];
for(int i = from[u]; i; i = nxt[i]) {
int v = to[i]; if(vis[v] || v == f) continue;
dist[v] = dist[u] + dis[i], calc(v, u, now + 1);
}
}
void update(int u, int f, int now) {
if(now == k - 1) return ;
if(S[now] == dist[u]) ++num[now];
else upt(S[now], dist[u]), num[now] = 1;
for(int i = from[u]; i; i = nxt[i]) {
int v = to[i]; if(vis[v] || v == f) continue;
update(v, u, now + 1);
}
}
void doit(int x) {
p = 0, tmp = Inf, getrt(x, 0), vis[p] = 1, maxnow = 0;
for(int i = from[p]; i; i = nxt[i]) {
int v = to[i]; if(vis[v]) continue;
dist[v] = dis[i], calc(v, p, 1), update(v, p, 1);
}
for(int i = 1; i <= maxnow; ++i) S[i] = -1, num[i] = 0;
for(int i = from[p]; i; i = nxt[i]) {
int v = to[i]; if(vis[v]) continue;
Size = siz[v], doit(v);
}
}
int main () {
read(n), read(m), read(k);
for(int i = 1, u, v, w; i <= m; ++i) {
read(u), read(v), read(w);
G[u].push_back((pii){v, w});
G[v].push_back((pii){u, w});
}
for(int i = 1; i <= n; ++i) sort(G[i].begin(), G[i].end());
dijk(1), memset(vis, 0, sizeof vis), init(1);
Size = n, memset(vis, 0, sizeof vis);
memset(dist, 0, sizeof dist), doit(1);
printf("%d %d\n", MX, tot);
return 0;
}
Bzoj4016/洛谷P2993 [FJOI2014] 最短路径树问题(最短路径问题+长链剖分/点分治)的更多相关文章
- (持续更新)虚树,KD-Tree,长链剖分,后缀数组,后缀自动机
真的就是讲课两天,吸收一个月呢! \(1.\)虚树 \(2.\)KD-Tree \(3.\)长链剖分 \(4.\)后缀数组 后缀数组 \(5.\)后缀自动机 后缀自动机
- 树链剖分 (求LCA,第K祖先,轻重链剖分、长链剖分)
2020/4/30 15:55 树链剖分是一种十分实用的树的方法,用来处理LCA等祖先问题,以及对一棵树上的节点进行批量修改.权值和查询等有奇效. So, what is 树链剖分? 可以简单 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 【BZOJ2830/洛谷3830】随机树(动态规划)
[BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度 ...
- [FJOI2014]最短路径树问题 长链剖分
[FJOI2014]最短路径树问题 LG传送门 B站传送门 长链剖分练手好题. 如果你还不会长链剖分的基本操作,可以看看我的总结. 这题本来出的很没水平,就是dijkstra(反正我是不用SPFA)的 ...
- Luogu2993 FJOI2014 最短路径树问题 最短路树、长链剖分
传送门 强行二合一最为致命 第一问直接最短路+$DFS$解决 考虑第二问,与深度相关,可以考虑长链剖分. 设$f_{i,j}$表示长度为$i$,经过边数为$j$时的最大边权和,考虑到每一次从重儿子转移 ...
- 洛谷 P4292 - [WC2010]重建计划(长链剖分+线段树)
题面传送门 我!竟!然!独!立!A!C!了!这!道!题!incredible! 首先看到这类最大化某个分式的题目,可以套路地想到分数规划,考虑二分答案 \(mid\) 并检验是否存在合法的 \(S\) ...
- BZOJ.3653.谈笑风生(长链剖分/线段树合并/树状数组)
BZOJ 洛谷 \(Description\) 给定一棵树,每次询问给定\(p,k\),求满足\(p,a\)都是\(b\)的祖先,且\(p,a\)距离不超过\(k\)的三元组\(p,a,b\)个数. ...
- BZOJ.1758.[WC2010]重建计划(分数规划 点分治 单调队列/长链剖分 线段树)
题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深 ...
随机推荐
- [Luogu 3966] TJOI 2013 单词
经典ACAM. 注意单词之间添加字符,以及对重复单词的处理. #include <cstdio> #include <cstring> #include <queue&g ...
- Linux系统开机启动时的工作原理
Linux系统开机启动时的工作原理也是深入了解Linux系统核心工作原理的一个很好的途径. 启动第一步--加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至 ...
- mysql 并发测试
针对上一节做一些针对公司业务的测试. 我们来做一些压力测试. 服务器配置: 操作系统: centos 5.6-64 CPU: 8核 内存: 8G 硬盘:sas 文件系统:linux MySQL:5.6 ...
- Java应用调试利器——BTrace教程
http://www.jianshu.com/p/26f19095d396 背景 生产环境中可能出现各种问题,但是这些问题又不是程序error导致的,可能是逻辑性错误,这时候需要获取程序运行时的数据信 ...
- bzoj 2809 左偏树\平衡树启发式合并
首先我们对于一颗树,要选取最多的节点使得代价和不超过m,那么我们可以对于每一个节点维护一个平衡树,平衡树维护代价以及代价的和,那么我们可以在logn的时间内求出这个子树最多选取的节点数,然后对于一个节 ...
- windows下 nginx安装 使用
介绍 Nginx (engine x) 是一个高性能的HTTP和反向代理服务器. 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络 ...
- vs 预编译命令行
xcopy "$(SolutionDir)\Transight_FY_DataExchange_UI\CuscapiUpdaterServer.xml" /i /d /y
- 集合类---set
定义:一个不包含重复元素的collection.set 不包含满足 e1.equals(e2) 的元素对 e1 和 e2,并且最多包含一个 null 元素,不保证集合里元素的顺序. 方法使用详解: 1 ...
- Educational Codeforces Round 23 补题小结
昨晚听说有教做人场,去补了下玩. 大概我的水平能做个5/6的样子? (不会二进制Trie啊,我真菜) A. 傻逼题.大概可以看成向量加法,判断下就好了. #include<iostream> ...
- PHP-5.6.22安装
查看系统及内核版本 [root@test88 ~]# cat /etc/redhat-release CentOS release 6.6 (Final) [root@test88 ~]# uname ...