[ARC 066] Tutorial
Link:
C:
如果存在可行方案则答案为$2^{n/2}$
#include <bits/stdc++.h> using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef pair<int,int> P;
const int MAXN=1e5+,MOD=1e9+;
int n,x,res[MAXN]; int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&x);
int rk=(n-+x)/;
if(!res[rk+]) res[rk+]=i;
else if(!res[n-rk]) res[n-rk]=i;
else return puts(""),;
}
int res=;
for(int i=;i<=n/;i++) (res*=)%=MOD;
printf("%d",res);
return ;
}
Problem C
D:
挺不错的一道数位$dp$
由于无法直接计算$sum$和$xor$的对数,因此考虑枚举$a,b$,而将$sum,xor\le n$作为限制条件
又因为公式:$a+b=aXORb+2*(a\&b)$,所以$a+b\le aXORb$,只考虑$a+b$的限制即可
此时问题转化为对于每个$sum\le n$求$xor$的取值个数
这样就可以用$dp[i][s]$表示前$i$位确定,$a+b$的和为$s$的个数,每次分$a,b$在该位上总共有几个1转移
(按每位1的个数转移才不会考虑异或与和同时相同的情况!)
但这样复杂度是不对的,在枚举$s$上明显花费了不必要的时间
根据一般数位$dp$记录上限的思想,如果前$i$位的$n-s\ge 2$,这些数以后都保证合法,就能统一计算了
这样就从$dp[i][s]$变成了$dp[i][0/1/2]$
#include <bits/stdc++.h> using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef pair<int,int> P;
#define MAX_D 64
#define MOD ((ll)1e9 + 7)
ll N,dp[MAX_D][],res;int nxt; int main()
{
scanf("%lld",&N);
dp[MAX_D-][]=;
for(int i=MAX_D-;i>;i--)
for(int j=; j <= ; j++)
for(int k=;k<=;k++)
{
nxt=j*+((N>>(i-))&)-k;
if (nxt<) continue;
nxt=nxt>?:nxt;
(dp[i-][nxt]+=dp[i][j])%=MOD;
}
res=;
for (int i=;i<=;i++) (res+=dp[][i])%=MOD;
printf("%lld\n", res);
return ;
}
Solution A
从后往前用记忆化搜索的形式写起来更加方便
一开始将上限值就设为$n$,每次确定最后一位取几个以后去掉最后一位,不用考虑和的合法性了
#include <bits/stdc++.h> using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef pair<int,int> P;
const int MOD=1e9+;
map<ll,ll> dp;ll n; ll dfs(ll x)
{
if(dp.count(x)) return dp[x];
return dp[x]=(dfs(x>>)+dfs((x-)>>)+dfs((x-)>>))%MOD;
} int main()
{
scanf("%lld",&n);
dp[]=;dp[]=;
printf("%lld",dfs(n));
return ;
}
Solution B
E:
首先要观察出几点性质:
1、只有在减号后可能加括号
2、括号不可能嵌套超过两层,否则可以转化为只有两层的简化情况
这样就可以记录$dp[0/1/2]$分别表示当前还有几个左括号未匹配的最大值来$dp$了
#include <bits/stdc++.h> using namespace std;
typedef long long ll;
int n,x;char op;ll dp[],nxt[]; int main()
{
scanf("%d%d",&n,&dp[]);
dp[]=dp[]=-1ll<<;
for(int i=;i<n;i++)
{
scanf(" %c%d",&op,&x);
if(op=='-') x=-x;
nxt[]=dp[]+x,nxt[]=dp[]-x,nxt[]=dp[]+x;
dp[]=max(nxt[],max(nxt[],nxt[]));
if(op=='+') dp[]=max(nxt[],nxt[]),dp[]=nxt[];
else dp[]=dp[],dp[]=max(nxt[],nxt[]);
}
printf("%lld",dp[]);
return ;
}
Solution A
其实也可以不用$dp$,考虑如果在某个减号后加了第一个括号的最优解
发现此时能保证将下一个减号后的值都变为正贡献,但对当前位到下一个减号间的值是无能为力的
这样枚举第一个括号的位置对答案更新即可
#include <bits/stdc++.h> using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef pair<int,int> P;
const int MAXN=1e5+;
char op[MAXN];
int n,dat[MAXN],nxt[MAXN],fst;
ll suf[MAXN],cur,res=-1ll<<; int main()
{
scanf("%d%d",&n,&fst);
for(int i=;i<n;i++)
scanf(" %c%d",&op[i],&dat[i]);
cur=n;
for(int i=n-;i;i--)
{
suf[i]=suf[i+]+dat[i];
if(op[i]=='-') nxt[i]=cur,cur=i;
}
cur=;
for(int i=;i<n;i++)
if(op[i]=='-')
res=max(res,cur-suf[i]+*suf[nxt[i]]),cur-=dat[i];
else cur+=dat[i];
res=max(res,cur);
printf("%lld",res+fst);
return ;
}
Solution B
F:
[ARC 066] Tutorial的更多相关文章
- AtCoder Regular Contest
一句话题解 因为上篇AGC的写的有点长……估计这篇也短不了所以放个一句话题解方便查阅啥的吧QwQ 具体的题意代码题解还是往下翻…… ARC 058 D:简单容斥计数. E:用二进制表示放的数字,然后状 ...
- HTML5 Canvas Arc Tutorial
HTML5 Canvas Arc Tutorial HTML5 Canvas Arc Tutorial
- [Hive - Tutorial] Built In Operators and Functions 内置操作符与内置函数
Built-in Operators Relational Operators The following operators compare the passed operands and gene ...
- 【转】Enable ARC in a Cocos2D Project: The Step-by-Step-How-To-Guide Woof-Woof!
On April 5, 2012, in idevblogaday, by Steffen Itterheim http://www.learn-cocos2d.com/2012/04/enablin ...
- GDI+ Tutorial for Beginners
原文 GDI+ Tutorial for Beginners GDI+ is next evolution of GDI. Using GDI objects in earlier versions ...
- MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.7 Adding a wms layer
MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.7 Adding a wms layer 前言 Add OGC WMS Layers( ...
- MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.6 Defining Projections and Extents
MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.6 Defining Projections and Extents 一.前言 当在m ...
- MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.5 Adding a raster layer
MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.5 Adding a raster layer 一.前言 MapServer不仅支持 ...
- Instruments Tutorial for iOS: How To Debug Memory Leaks【转】
If you're new here, you may want to subscribe to my RSS feed or follow me on Twitter. Thanks for vis ...
随机推荐
- Spring Data JPA 的使用(山东数漫江湖)
pring data jpa介绍 什么是JPA JPA(Java Persistence API)是Sun官方提出的Java持久化规范.它为Java开发人员提供了一种对象/关联映射工具来管理Java应 ...
- Transformation(线段树+HDU4578+多种操作+鬼畜的代码)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578 题目: 题意:n个数初始值为0,进行四种操作:1.将区间内的数字加c:2.将区间内的数字乘c:3 ...
- python初步学习-pycharm使用 (二)
pycharm调试模式 假设我们的程序在运行过程中命中了一个错误,那我们如何定位错误发生的位置?这就需要进行调试. 在Pycharm中我们可以在其中直接对程序进行调试,唯一需要做的准备工作就是在程序必 ...
- vs调试 配置IISExpress允许局域网内部访问
内网可访问后,本机不能使用localhost 1.找到IISExpress的配置文件,位于 <文档>/IISExpress/config文件夹下,打开applicationhost.c ...
- Python与RPC -- (转)
XML-RPC xmlrpc是使用http协议做为传输协议的rpc机制,使用xml文本的方式传输命令和数据. 一个rpc系统,必然包括2个部分: 1)rpc client,用来向rpc server调 ...
- python基础===多进程
进程线程的区别在进程,线程,协程的区别 linux或者unix有fork()函数,但是不支持win系统. multiprocessing multiprocessing模块是跨平台版本的多进程模块.支 ...
- python string 对齐文本的几个方法
用rjust().ljust()和center()方法对齐文本
- Oracle 内存管理
--内存分配建库时可以先分配系统内存的50%-80%给Oracle,后期根据业务再进行调整.SGA.PGA分配比例:OLTP:SGA %80 , PGA %20OLAP:SGA %50 , PGA % ...
- 【LOJbeta round1】ZQC的手办
NOI2012-超级钢琴的升级版. 用线段树维护最小值及其出现位置,接下来就跟超级钢琴一个做法了. #include<bits/stdc++.h> #define N 500010 #de ...
- swift 动态获取类, 获取命名空间
在做swift开发中很多时候会动态加载控制器的类, 可以让app更加灵活显示界面信息 一般情况下都是服务器返回显示的控制器类name然后动态显示, 但是服务器返回的类name是string, 怎么转换 ...