http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239

还是模板题。

杜教筛:$$S(n)=\frac{n(n+1)}{2}-\sum_{i=2}^nS\left(\left\lfloor\frac ni\right\rfloor\right)$$

基于质因子分解的筛法:详见2016年论文《积性函数求和的几种方法》(讲得很详细的~~~)

为什么我写的洲哥筛常熟巨大QAQ

杜教筛\(O\left(n^{\frac 23}\right)\)

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll N = 1E10;
const int UP = 3981071;
const int mo = 1000000007;
const int ni2 = 500000004; int phi[UP + 3], prime[UP + 3], num = 0, sum[UP + 3];
bool notp[UP + 3]; void Euler_shai() {
sum[1] = phi[1] = 1;
for (int i = 2; i <= UP; ++i) {
if (!notp[i]) {
prime[++num] = i;
phi[i] = i - 1;
}
for (int j = 1, pro; j <= num && (pro = prime[j] * i) <= UP; ++j) {
notp[pro] = true;
if (i % prime[j] == 0) {
phi[pro] = phi[i] * prime[j];
break;
} else
phi[pro] = phi[i] * phi[prime[j]];
}
sum[i] = (sum[i - 1] + phi[i]) % mo;
}
} struct HashTable {
static const int p = 1000007;
ll val[p], ref[p];
HashTable() {memset(ref, -1, sizeof(ref));} void add(ll pos, ll nu) {
int tmp = pos % p;
while (ref[tmp] != -1) {
if (ref[tmp] == pos) return;
++tmp; if (tmp == p) tmp = 0;
}
ref[tmp] = pos;
val[tmp] = nu;
} ll query(ll pos) {
int tmp = pos % p;
while (ref[tmp] != pos) {++tmp; if (tmp == p) tmp = 0;}
return val[tmp];
}
} HT; ll Sum(ll x) {
return x <= UP ? sum[x] : HT.query(x);
} void DJ_shai(ll n) {
for (ll i = n, y; i >= 1; i = n / (y + 1)) {
y = n / i;
if (y <= UP) continue;
ll ret = 0;
for (ll j = 2, l, pre = 1; j <= y; ++j) {
l = y / j;
j = y / l;
ret = (ret + Sum(l) * ((j - pre) % mo) % mo) % mo;
pre = j;
}
HT.add(y, (y % mo * ((y + 1) % mo) % mo * ni2 % mo - ret + mo) % mo);
}
} main() {
Euler_shai();
ll top;
scanf("%lld", &top);
DJ_shai(top);
printf("%lld\n", Sum(top));
return 0;
}

基于质因子分解的筛法\(O\left(\frac{n^{\frac 34}}{\log n}\right)\)

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 1E10;
const int UP = 1E5;
const int mo = 1000000007;
const int ni2 = 500000004; bool notp[UP + 3];
ll G0[UP * 2 + 3], G1[UP * 2 + 3], F[UP * 2 + 3], J[UP * 2 + 3];
int prime[UP + 3], sum_prime[UP + 3], sum_phi[UP + 3], phi[UP + 3], sum_p[UP + 3];
int pre[UP * 2 + 3], num = 0, ma[UP + 3]; void Euler_shai(int n) {
phi[1] = sum_phi[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!notp[i]) {
prime[++num] = i;
sum_prime[num] = (sum_prime[num - 1] + i) % mo;
phi[i] = i - 1;
sum_p[i] = (sum_p[i - 1] + i - 1) % mo;
ma[i] = num;
} else {
sum_p[i] = sum_p[i - 1];
ma[i] = ma[i - 1];
}
for (int j = 1, pro; j <= num && (pro = i * prime[j]) <= n; ++j) {
notp[pro] = true;
if (i % prime[j] == 0) {
phi[pro] = 1ll * phi[i] * prime[j] % mo;
break;
} else
phi[pro] = 1ll * phi[i] * phi[prime[j]] % mo;
}
sum_phi[i] = (sum_phi[i - 1] + phi[i]) % mo;
}
} struct HashTable {
static const int ppp = 2333333;
ll ref[ppp]; int val[ppp];
void clr() {memset(ref, -1, sizeof(ref)); ref[0] = val[0] = 0;} void add(ll pos, int nu) {
int tmp = pos % ppp;
while (ref[tmp] != -1) {++tmp; if (tmp == ppp) tmp = 0;}
ref[tmp] = pos; val[tmp] = nu;
} int query(ll pos) {
int tmp = pos % ppp;
while (ref[tmp] != pos) {++tmp; if (tmp == ppp) tmp = 0;}
return val[tmp];
}
} HT; #define maa(x) (x >= sqc ? num : ma[x]) ll ZY_shai(ll n) {
int cnt = 0, sqf = floor(sqrt(n)), sqc = ceil(sqrt(n)); HT.clr();
for (ll i = n, y; i >= 1; i = n / (y + 1)) {
J[++cnt] = (y = n / i);
HT.add(y, cnt);
G0[cnt] = y;
G1[cnt] = y % mo * ((y + 1) % mo) % mo * ni2 % mo;
pre[cnt] = 0;
} ll pp, delta;
for (int i = 1, p = prime[i]; i <= num; p = prime[++i]) {
pp = 1ll * p * p;
for (int j = cnt; j >= 1 && J[j] >= pp; --j) {
int id = HT.query(J[j] / p);
delta = max(G0[id] - (i - 1 - pre[id]), 1ll);
G0[j] -= delta;
delta = (G1[id] - ((sum_prime[min(i - 1, maa(J[id]))] - sum_prime[pre[id]] + mo) % mo) + mo) % mo;
G1[j] = (G1[j] - p * delta % mo + mo) % mo;
pre[j] = i;
}
} for (int j = cnt; j >= 1; --j) {
G0[j] = max(G0[j] - (num - pre[j]), 1ll);
G1[j] = (G1[j] - ((sum_prime[maa(J[j])] - sum_prime[pre[j]] + mo) % mo) + mo) % mo;
} ll ans = 0;
for (int i = 1; i < sqc; ++i) {
int id = HT.query(n / i);
ans = (ans + (1ll + G1[id] - G0[id] + mo) % mo * phi[i] % mo) % mo;
} ll prep = 0, sqrprep;
for (int j = 1; j <= cnt; ++j) F[j] = 1;
for (int i = num, p = prime[i]; i >= 1; p = prime[--i]) {
pp = 1ll * p * p;
for (int j = cnt; j >= 1 && J[j] >= pp; --j) {
ll J_j = J[j];
if (J_j < sqrprep) {
if (J_j >= prep) F[j] = (1 + sum_p[min(J_j, 1ll * sqf)] - sum_p[prep - 1] + mo) % mo;
else F[j] = 1;
}
int id = HT.query(J_j / p);
if (J[id] < sqrprep) {
if (J[id] >= prep) delta = (1 + sum_p[min(J[id], 1ll * sqf)] - sum_p[prep - 1] + mo) % mo;
else delta = 1;
} else
delta = F[id];
F[j] = (F[j] + (p - 1) * delta % mo) % mo; ll pic = pp;
while (J_j >= pic) {
id = HT.query(J_j / pic);
if (J[id] < sqrprep) {
if (J[id] >= prep) delta = (1 + sum_p[min(J[id], 1ll * sqf)] - sum_p[prep - 1] + mo) % mo;
else delta = 1;
} else
delta = F[id];
F[j] = (F[j] + pic / p * (p - 1) % mo * delta % mo) % mo;
pic *= p;
}
}
prep = p; sqrprep = pp;
} return ((ans + F[cnt]) % mo - sum_phi[sqc - 1] + mo) % mo;
} int main() {
ll top;
scanf("%lld\n", &top);
Euler_shai((int) sqrt(top));
printf("%lld\n", ZY_shai(top));
return 0;
}

【51Nod 1239】欧拉函数之和的更多相关文章

  1. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  2. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  3. 51nod 1239 欧拉函数之和【欧拉函数+杜教筛】

    和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...

  4. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  5. 【51nod】1239 欧拉函数之和 杜教筛

    [题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...

  6. 【51nod】1239 欧拉函数之和

    题解 写完上一道就开始写这个,大体上就是代码改了改而已= = 好吧,再推一下式子! \(\sum_{i = 1}^{n}i = \sum_{i = 1}^{n}\sum_{d | i}\phi(d) ...

  7. 51Nod 1239 欧拉函数前n项和 杜教筛

    http://www.51nod.com/Challenge/Problem.html#!#problemId=1239 AC代码 #include <bits/stdc++.h> #de ...

  8. 51nod1239 欧拉函数之和

    跟1244差不多. //由于(x+1)没有先mod一下一直WA三个点我... //由于(x+1)没有先mod一下一直WA三个点我... #include<cstdio> #include& ...

  9. 欧拉函数之和(51nod 1239)

    对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

  10. 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...

随机推荐

  1. 【BZOJ】1574: [Usaco2009 Jan]地震损坏Damage

    [算法]搜索 [题意]给定无向图,现在可能有一些点已经被删除,只给出信息是c个点不能到达结点1,求最少的不能到达结点1的个数(含已删除点). [题解] 真是一道奥妙重重的题目. 每个点不能到达结点1, ...

  2. sqlserver 树形结构表查询 获取拼接结果

    树形表结构如下 IF EXISTS (SELECT * FROM sys.all_objects WHERE object_id = OBJECT_ID(N'[dbo].[Test]') AND ty ...

  3. fundamentals of the jQuery library

    1.why is jquery Only 32kB minified and gzipped. Can also be included as an AMD module Supports CSS3 ...

  4. linux安装(Ubuntu)——(二)

    centos的安装参考: http://www.runoob.com/linux/linux-install.html Linux 安装(Ubuntu) 虚拟机:虚拟机(Virtual Machine ...

  5. 9.quartus_warning_altera_reserved_tck

    编译的时候没有注意,整个工程都可以在板子上跑起来.但是做Powerplay的时候,出现了这个Critical Warning:. Critical Warning: The following clo ...

  6. sicily 1046. Plane Spotting

    1046. Plane Spotting Time Limit: 1sec    Memory Limit:32MB  Description Craig is fond of planes. Mak ...

  7. HDU 6119 小小粉丝度度熊 双指针

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6119 题意:中文题面. 解法:先处理可能交叉的区间,然后容易发现满足双指针的特性. //HDU 611 ...

  8. js前端数据加密插件

    (2014-11-14 15:37:35) 转载▼ 标签: it 分类: Web前端开发 摘要: 大部分动态网站都支持从客户端到服务器传递数据,如果传递的数据被别人截取就非常危险,尤其是一些用户名密码 ...

  9. agc016D - XOR Replace(图论 智商)

    题意 题目链接 给出两个长度为\(n\)的数组\(a, b\) 每次可以将\(a\)中的某个数替换为所有数\(xor\)之和. 若\(a\)数组可以转换为\(b\)数组,输出最少操作次数 否则输出\( ...

  10. svn命令行

    svn查看某一版本下的某一文件 svn cat -r 版本号 文件的目录 svn 对比两个版本之间的差别 svn diff -r 新版本:旧版本