洛谷——P1890 gcd区间
P1890 gcd区间
题目描述
给定一行n个正整数a[1]..a[n]。
m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数。
输入输出格式
输入格式:
第一行两个整数n,m。
第二行n个整数表示a[1]..a[n]。
以下m行,每行2个整数表示询问区间的左右端点。
保证输入数据合法。
输出格式:
共m行,每行表示一个询问的答案。
输入输出样例
说明
对于30%的数据,n <= 100, m <= 10
对于60%的数据,m <= 1000
对于100%的数据,1 <= n <= 1000,1 <= m <= 1,000,000
0 < 数字大小 <= 1,000,000,000
n^2*log n枚举,o(1)查询 枚举左右端点然后求出区间的gcd
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define N 1010 using namespace std; int n,m,x,y,a[N],gcd[N][N]; int read() { ,f=; char ch=getchar(); ;ch=getchar();} +ch-',ch=getchar(); return x*f; } int GCD(int a,int b) { ) return a; return GCD(b,a%b); } int main() { n=read();m=read(); ;i<=n;i++) a[i]=read(); ;i<=n;i++) for(int j=i;j<=n;j++) { if(j==i) gcd[i][j]=a[j]; else { x=min(gcd[i][j-],a[j]); y=max(gcd[i][j-],a[j]); gcd[i][j]=GCD(x,y); } } while(m--) { x=read(),y=read(); printf("%d\n",gcd[x][y]); } ; }
洛谷——P1890 gcd区间的更多相关文章
- 洛谷 P1890 gcd区间
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...
- 洛谷P1890 gcd区间 [2017年6月计划 数论09]
P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n ...
- 洛谷P1890 gcd区间
题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表 ...
- 洛谷1890 gcd区间
题目描述 给定一行n个正整数a[1]..a[n].m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m.第二行n个整数表示a ...
- P1890 gcd区间
P1890 gcd区间我一开始80分暴力,模拟100做法dpO(n^2+m)f[i][j]表示i到j的 gcd初始化f[i][i]=i;f[i][j]=gcd(f[i][j-1],a[j]);这样查询 ...
- 洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...
- 洛谷 1063 dp 区间dp
洛谷 1063 dp 区间dp 感觉做完这道提高组T1的题之后,受到了深深的碾压,,最近各种不在状态.. 初看这道题,不难发现它具有区间可并性,即(i, j)的最大值可以由(i, k) 与 (k+1, ...
- BZOJ5259/洛谷P4747: [Cerc2017]区间
BZOJ5259/洛谷P4747: [Cerc2017]区间 2019.8.5 [HZOI]NOIP模拟测试13 C.优美序列 思维好题,然而当成NOIP模拟题↑真的好吗... 洛谷和BZOJ都有,就 ...
- 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化
洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...
随机推荐
- 2015/9/18 Python基础(14):函数式编程
这篇写了忘发.现在补上. Python不是也不大可能成为一种函数式的编程语言,但是它支持许多有价值的函数式编程语言构建.也有些表现的像函数式编程机制但是从传统上也不能认为是函数式编程语言的构建.Pyt ...
- SVN服务器更换IP,客户端重新定位
svn服务器更换ip,后客户端需要重新定位,操作如下: 1.找到你的项目文件所在的根目录,右键点击空白地方,弹出菜单 TortoiseSVN-->Relocate 点击Relocate ,弹出重 ...
- Java迭代实现斐波那契数列
剑指offer第九题Java实现 题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. public class Test9 { public static void ...
- Android项目分包---总结-------直接使用
注: 本文是从该文摘抄而来的.简单的说,就是阅读了该文,然后,再自己复述,复制形成该文. 1.罗列Android项目的分包规则 微盘使用分包规则 如下: 1).第一层com.sin ...
- 【TYVJ】1520 树的直径
[算法]树的直径 memset(a,0,sizeof(a)) #include<cstdio> #include<algorithm> #include<cstring& ...
- Exponial (欧拉定理+指数循环定理+欧拉函数+快速幂)
题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2021 Description Everybody loves big numbers ...
- urllib3使用指南
对比urllib,用urllib3处理http请求十分方便,可以嵌入web服务后端用于访问其它web实例提供的接口 一.安装 pip install urllib3 二.初始化 导入urllib3 i ...
- windows 上启动appium
import org.apache.commons.exec.CommandLine; import org.apache.commons.exec.DefaultExecuteResultHandl ...
- response.getWriter().write()和 response.getWriter().print()的区别
异步上传图片的代码.发现里面用了response.getWriter().print(),故联想到response.getWriter().writer(),经过一番api的查找与实操,总结如下: r ...
- 虚拟机 VMware Workstation12 安装Ubuntu系统
Ubuntu 系统是一款优秀的.基于GNU/Linux 的平台的桌面系统. 当然,目前为止很多应用程序还完全不能允许运行在 Ubuntu 系统上,而且 Ubuntu 的界面.使用方法会让大部分Wind ...