E. Bear and Destroying Subtrees

http://codeforces.com/problemset/problem/643/E

题意:

  Q个操作。

  1. 加点,在原来的树上加一个点,之后还是一棵树,初始时一个点。
  2. 让一棵子树内每条边有1/2的概率消失,然后的深度为:剩余的与子树的根联通的点中深度最大的。询问假如攻击这个点,期望深度。

分析:

  可以枚举一个深度,计算概率。

  f[x][i]表示以x为根的子树中,深度为<=x的概率。那么答案就是$\sum_{h=1}^{MAX\_H}h\times(f[x][h]-f[x][h-1])$。

  考虑如何求出f数组:直接将所有子树小于等于h的概率相乘,$f[x][h]=\prod_{v=son_x}(\frac{1}{2}+\frac{1}{2}f[v][h-1])$

  考虑如何维护f数组,如果加入一个点,那么只会影响到父节点到根的路径,而且每个点只会影响一个,即距离它为k的点(设为y),只有f[y][k-1]受到影响。因为增加一个点后,它的父节点的0会受到影响(乘1/2),那么父节点的父节点的1就受到影响,以此类推。还可以理解为:因为增加了一个点,y的最长路径不是y-1了, 那么概率也不是1了,因为如果长度为k的概率要求新增的这个点的边断开才行。y的其他的值不受影响吗?f[y][k-2]要求距离它k-1的点必须断开,距离大于k-1的剩下的随便了。 那么,直接暴力修改这条路径即可。每个点除以原来的f[v][h-1],乘以新的f[v][h-1]。

  由于路径长度是很长的(可以5e5),直接暴力修改会T。

  发现如果路径很长之后,它的概率就会非常小,$\frac{1}{2^h}$,所以只需确定一个更新的深度,这个深度不会影响精度,然后每次修改这些个点即可。

  具体题解里说明 http://codeforces.com/blog/entry/44754

记录一下当时的想法:f[x][i]为x子树内深度为i的概率。发现转移起来真是麻烦。

首先可以然后它的一个子节点为i,然后其他的节点为0~i,然后,相乘,再除以2。(或者每个点只乘以左边的,那么就不需要除以2了)。然后就需要在记录前缀和,就成了和上面差不多了。

代码:

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
const int H = ; double f[N][H+];
int fa[N], n = ; void add(int x) {
fa[++n] = x;
for (int i=; i<=H; ++i) f[n][i] = ;
double t1 = f[x][], t2;
f[x][] *= 0.5;
for (int i=; i<=H; ++i, x=fa[x]) {
int p = fa[x]; if (!p) break;
t2 = f[p][i];
f[p][i] = f[p][i] / (0.5 + 0.5 * t1);
f[p][i] = f[p][i] * (0.5 + 0.5 * f[x][i - ]);
t1 = t2;
}
}
void query(int x) {
double ans = ;
for (int i=; i<=H; ++i)
ans += i * (f[x][i] - f[x][i - ]);
printf("%.10lf\n",ans);
}
int main() {
int Q = read();
for (int i=; i<=H; ++i) f[][i] = ;
while (Q --) {
int opt = read(), a = read();
if (opt == ) add(a);
else query(a);
}
return ;
}

CF 643 E. Bear and Destroying Subtrees的更多相关文章

  1. CF643E. Bear and Destroying Subtrees 期望dp

    题目链接 CF643E. Bear and Destroying Subtrees 题解 dp[i][j]表示以i为根的子树中,树高小于等于j的概率 转移就是dp[i][j] = 0.5 + 0.5 ...

  2. 笔记-CF643E Bear and Destroying Subtrees

    CF643E Bear and Destroying Subtrees 设 \(f_{i,j}\) 表示节点 \(i\) 的子树深度为 \(\le j\) 的概率,\(ch_i\) 表示 \(i\) ...

  3. Codeforces.643E.Bear and Destroying Subtrees(DP 期望)

    题目链接 \(Description\) 有一棵树.Limak可以攻击树上的某棵子树,然后这棵子树上的每条边有\(\frac{1}{2}\)的概率消失.定义 若攻击以\(x\)为根的子树,高度\(ht ...

  4. CF643E Bear and Destroying Subtrees

    题解 我们可以先写出\(dp\)式来. 设\(dp[u][i]\)表示以\(u\)为根的子树深度不超过\(i-1\)的概率 \(dp[u][i]=\prod (dp[v][i-1]+1)*\frac{ ...

  5. [CF643E]Bear and Destroying Subtrees(期望,忽略误差)

    Description: ​ 给你一棵初始只有根为1的树 ​ 两种操作 ​ 1 x 表示加入一个新点以 x为父亲 ​ 2 x 表示以 x 为根的子树期望最深深度 ​ 每条边都有 \(\frac{1}{ ...

  6. [cf674E]Bear and Destroying Subtrees

    令$f_{i,j}$表示以$i$为根的子树中,深度小于等于$j$的概率,那么$ans_{i}=\sum_{j=1}^{dep}(f_{i,j}-f_{i,j-1})j$ 大约来估计一下$f_{i,j} ...

  7. 一句话题解&&总结

    CF79D Password: 差分.两点取反,本质是匹配!最短路+状压DP 取反是套路,匹配是发现可以把操作进行目的化和阶段化,从而第二次转化问题. 且匹配不会影响别的位置答案 sequence 计 ...

  8. 跟着xiaoxin巨巨做cf

    cf 385 C. Bear and Prime Numbers 题目大意:有一个数列{xi},每次给出一个询问[l, r],即问 S(l ,r)是l和r之间的素数,f(p)表示数列{xi}中整除p的 ...

  9. CF 628C --- Bear and String Distance --- 简单贪心

    CF 628C 题目大意:给定一个长度为n(n < 10^5)的只含小写字母的字符串,以及一个数d,定义字符的dis--dis(ch1, ch2)为两个字符之差, 两个串的dis为各个位置上字符 ...

随机推荐

  1. AngularJs学习笔记--Understanding the Model Component

    原版地址:http://docs.angularjs.org/guide/dev_guide.mvc.understanding_model 在angular文档讨论的上下文中,术语“model”可以 ...

  2. mysql配置远程登录

    1.vim /etc/my.cnf注释这一行:bind-address=127.0.0.1 ==> #bind-address=127.0.0.1 2.重启服务:sudo service mys ...

  3. 十.mysqld_multi stop无效问题

    今天在尝试运行mysqld_report stop的时候,发现无法停止mysql,日志中的错误如下 Stopping MySQL servers mysqladmin: [Warning] Using ...

  4. .net打印

    <input type="button" onclick="javascript:printit()"></input>//打印整个ht ...

  5. 理解HTML DOM

    DOM(Document Object Model)全称文档对象模型.DOM其实是JavaScript操作网页的一套API接口,定义了访问和操作HTML文档的标准.定义了所有HTML元素的对象和属性, ...

  6. 简单使用idea Spring Boot搭建项目

    第一步:使用Spring Initializr创建 第二步:项目配置 第三步:选择项目需要的依赖 第五步: ok 创建完成,修改仓库 maven{ url 'http://maven.aliyun.c ...

  7. java中prepareStatement与createStatement的区别

    首先来看两段代码: 第一个使用createStatement() public void delete( int id){ try { Connection c = DBUtil.getConnect ...

  8. 前端面试题(copy)

    前端开发面试知识点大纲: HTML&CSS: 对Web标准的理解.浏览器内核差异.兼容性.hack.CSS基本功:布局.盒子模型.选择器优先级及使用.HTML5.CSS3.移动端适应. Jav ...

  9. usb入门学习

    1.学习资源: usb org.http://www.beyondlogic.org/usbnutshell/usb3.shtml http://wenku.baidu.com/view/028231 ...

  10. JS n秒后自动跳转实例

    <p><a href="<?php echo base_url();?>usercenter/index" id="message" ...