C++ STL源代码学习(list篇)
///STL list为双向循环链表 struct _List_node_base {
_List_node_base* _M_next;
_List_node_base* _M_prev;
}; template <class _Tp>
struct _List_node : public _List_node_base {
_Tp _M_data;
}; struct _List_iterator_base {
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef bidirectional_iterator_tag iterator_category; ///迭代器为双向迭代器 _List_node_base* _M_node; ///迭代器使用_List_node_base*标志其指向 _List_iterator_base(_List_node_base* __x) : _M_node(__x) {}
_List_iterator_base() {} void _M_incr() { _M_node = _M_node->_M_next; }
void _M_decr() { _M_node = _M_node->_M_prev; } bool operator==(const _List_iterator_base& __x) const {
return _M_node == __x._M_node;
}
bool operator!=(const _List_iterator_base& __x) const {
return _M_node != __x._M_node;
}
}; template<class _Tp, class _Ref, class _Ptr>
struct _List_iterator : public _List_iterator_base {
typedef _List_iterator<_Tp,_Tp&,_Tp*> iterator;
typedef _List_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
typedef _List_iterator<_Tp,_Ref,_Ptr> _Self; typedef _Tp value_type;
typedef _Ptr pointer;
typedef _Ref reference;
typedef _List_node<_Tp> _Node; ///实际指向的类型 _List_iterator(_Node* __x) : _List_iterator_base(__x) {}
_List_iterator() {}
_List_iterator(const iterator& __x) : _List_iterator_base(__x._M_node) {} reference operator*() const { ///该函数尽管可能改动结点的值,但因迭代器对象仅仅保存
///指向结点的指针,因此仍然声明为const
return ((_Node*) _M_node)->_M_data;
} pointer operator->() const { return &(operator*()); } _Self& operator++() {
this->_M_incr();
return *this;
}
_Self operator++(int) {
_Self __tmp = *this;
this->_M_incr();
return __tmp;
}
_Self& operator--() {
this->_M_decr();
return *this;
}
_Self operator--(int) {
_Self __tmp = *this;
this->_M_decr();
return __tmp;
}
}; inline bidirectional_iterator_tag
iterator_category(const _List_iterator_base&)
{
return bidirectional_iterator_tag();
} template <class _Tp, class _Ref, class _Ptr>
inline _Tp*
value_type(const _List_iterator<_Tp, _Ref, _Ptr>&)
{
return 0;
} inline ptrdiff_t*
distance_type(const _List_iterator_base&)
{
return 0;
} template <class _Tp, class _Alloc>
class _List_base
{
public:
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); } _List_base(const allocator_type&) {
///唯一的构造函数,规定了list为空时的合法状态:头结点的前后指针均指向其自身
_M_node = _M_get_node();
_M_node->_M_next = _M_node;
_M_node->_M_prev = _M_node;
}
~_List_base() {
clear(); ///将每一个结点清楚
_M_put_node(_M_node); ///将头结点归还
} void clear(); protected:
typedef simple_alloc<_List_node<_Tp>, _Alloc> _Alloc_type; _List_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
void _M_put_node(_List_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); } protected:
_List_node<_Tp>* _M_node; ///头结点指针,为实指节点类型
}; template <class _Tp, class _Alloc>
void
_List_base<_Tp,_Alloc>::clear()
{
///因为结点的_M_next均为基类指针,而基类指针不能直接初始化或者赋值给
///派生类指针,因此须要强制类型转化,已将_M_node->_M_next强制转化为其
///实质类型的指针.
_List_node<_Tp>* __cur = (_List_node<_Tp>*) (_M_node->_M_next);
while (__cur != _M_node) {
_List_node<_Tp>* __tmp = __cur;
__cur = (_List_node<_Tp>*) (__cur->_M_next);
_Destroy(&__tmp->_M_data); ///析构结点数据元素
_M_put_node(__tmp); ///归还结点内存
} ///使链表恢复合法状态
_M_node->_M_next = _M_node;
_M_node->_M_prev = _M_node;
} template <class _Tp, class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
class list : protected _List_base<_Tp, _Alloc> { __STL_CLASS_REQUIRES(_Tp, _Assignable); typedef _List_base<_Tp, _Alloc> _Base;
protected:
typedef void* _Void_pointer; public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef _List_node<_Tp> _Node;
typedef size_t size_type;
typedef ptrdiff_t difference_type; typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); } public:
typedef _List_iterator<_Tp,_Tp&,_Tp*> iterator;
typedef _List_iterator<_Tp,const _Tp&,const _Tp*> const_iterator; typedef reverse_bidirectional_iterator<const_iterator,value_type,
const_reference,difference_type>
const_reverse_iterator;
typedef reverse_bidirectional_iterator<iterator,value_type,reference,
difference_type>
reverse_iterator; protected:
using _Base::_M_node;
using _Base::_M_put_node;
using _Base::_M_get_node; protected:
_Node* _M_create_node(const _Tp& __x) ///用特定数据构造结点
{
_Node* __p = _M_get_node();
try {
_Construct(&__p->_M_data, __x);
}catch(...){
_M_put_node(__p);
}
return __p;
} _Node* _M_create_node() ///构造含默认值的结点
{
_Node* __p = _M_get_node();
try {
_Construct(&__p->_M_data);
}catch(...){
_M_put_node(__p);
} return __p;
} public:
explicit list(const allocator_type& __a = allocator_type()) : _Base(__a) {} iterator begin() {
///此处亦必须强制进行指针类型转化,因为iterator类构造函数仅仅接受
///派生类指针,而_M_node->_M_next为基类指针,不能自己主动转化
return (_Node*)(_M_node->_M_next);
}
const_iterator begin() const { return (_Node*)(_M_node->_M_next); } iterator end() { return _M_node; }
const_iterator end() const { return _M_node; } reverse_iterator rbegin()
{ return reverse_iterator(end()); }
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(end()); } reverse_iterator rend()
{ return reverse_iterator(begin()); }
const_reverse_iterator rend() const
{ return const_reverse_iterator(begin()); } bool empty() const { return _M_node->_M_next == _M_node; }
size_type size() const {
///list的size函数须要遍历整个list
size_type __result = 0;
distance(begin(), end(), __result);
return __result;
}
size_type max_size() const { return size_type(-1); } reference front() { return *begin(); }
const_reference front() const { return *begin(); }
reference back() { return *(--end()); }
const_reference back() const { return *(--end()); } ///list的swap函数仅仅需交换各自的头指针
void swap(list<_Tp, _Alloc>& __x) { __STD::swap(_M_node, __x._M_node); } iterator insert(iterator __position, const _Tp& __x) {
///该函数仅仅需生成一个新节点,然后改动相关指针将该节点“链”到合适位置就可以
_Node* __tmp = _M_create_node(__x);
__tmp->_M_next = __position._M_node;
__tmp->_M_prev = __position._M_node->_M_prev;
__position._M_node->_M_prev->_M_next = __tmp;
__position._M_node->_M_prev = __tmp;
return __tmp;
}
iterator insert(iterator __position) { return insert(__position, _Tp()); } /// Check whether it's an integral type. If so, it's not an iterator.
template<class _Integer>
void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
__true_type) {
_M_fill_insert(__pos, (size_type) __n, (_Tp) __x);
} template <class _InputIterator>
void _M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type); template <class _InputIterator>
void insert(iterator __pos, _InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
} void insert(iterator __pos, size_type __n, const _Tp& __x)
{ _M_fill_insert(__pos, __n, __x); } void _M_fill_insert(iterator __pos, size_type __n, const _Tp& __x); ///在x前插入n个x void push_front(const _Tp& __x) { insert(begin(), __x); }
void push_front() {insert(begin());}
void push_back(const _Tp& __x) { insert(end(), __x); }
void push_back() {insert(end());} iterator erase(iterator __position) {
_List_node_base* __next_node = __position._M_node->_M_next;
_List_node_base* __prev_node = __position._M_node->_M_prev;
_Node* __n = (_Node*) __position._M_node;
__prev_node->_M_next = __next_node;
__next_node->_M_prev = __prev_node;
_Destroy(&__n->_M_data);
_M_put_node(__n);
return iterator((_Node*) __next_node);
}
iterator erase(iterator __first, iterator __last);
void clear() { _Base::clear(); } void resize(size_type __new_size, const _Tp& __x);
void resize(size_type __new_size) { this->resize(__new_size, _Tp()); } void pop_front() { erase(begin()); }
void pop_back() {
iterator __tmp = end();
erase(--__tmp);
} list(size_type __n, const _Tp& __value,
const allocator_type& __a = allocator_type()): _Base(__a)
{ insert(begin(), __n, __value); } explicit list(size_type __n): _Base(allocator_type())
{ insert(begin(), __n, _Tp()); } /// We don't need any dispatching tricks here, because insert does all of
/// that anyway.
template <class _InputIterator>
list(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ insert(begin(), __first, __last); } list(const list<_Tp, _Alloc>& __x) : _Base(__x.get_allocator())
{ insert(begin(), __x.begin(), __x.end()); } ~list() { } ///善后留给基类中的析构函数 list<_Tp, _Alloc>& operator=(const list<_Tp, _Alloc>& __x); public:
/// assign(), a generalized assignment member function. Two
/// versions: one that takes a count, and one that takes a range.
/// The range version is a member template, so we dispatch on whether
/// or not the type is an integer. void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); } void _M_fill_assign(size_type __n, const _Tp& __val); template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
} template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); } template <class _InputIterator>
void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type); protected:
///将[first,last)从原位置中摘下来,插入到position之前
///这个函数主要通过指针的改动来完毕
void transfer(iterator __position, iterator __first, iterator __last) {
if (__position != __last) {
/// Remove [first, last) from its old position.
__last._M_node->_M_prev->_M_next = __position._M_node;
__first._M_node->_M_prev->_M_next = __last._M_node;
__position._M_node->_M_prev->_M_next = __first._M_node; /// Splice [first, last) into its new position.
_List_node_base* __tmp = __position._M_node->_M_prev;
__position._M_node->_M_prev = __last._M_node->_M_prev;
__last._M_node->_M_prev = __first._M_node->_M_prev;
__first._M_node->_M_prev = __tmp;
}
} public:
///将x链入本链表position之前
void splice(iterator __position, list& __x) {
if (!__x.empty())
this->transfer(__position, __x.begin(), __x.end());
} ///将i所指结点摘下来,插入到position之前
void splice(iterator __position, list&, iterator __i) {
iterator __j = __i;
++__j;
if (__position == __i || __position == __j) return;
this->transfer(__position, __i, __j);
} void splice(iterator __position, list&, iterator __first, iterator __last) {
if (__first != __last)
this->transfer(__position, __first, __last);
}
void remove(const _Tp& __value);
void unique();
void merge(list& __x);
void reverse();
void sort(); template <class _Predicate> void remove_if(_Predicate);
template <class _BinaryPredicate> void unique(_BinaryPredicate);
template <class _StrictWeakOrdering> void merge(list&, _StrictWeakOrdering);
template <class _StrictWeakOrdering> void sort(_StrictWeakOrdering);
}; template <class _Tp, class _Alloc>
inline bool
operator==(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{
///此处必须使用const_iterator,因const list所得到的迭代器均为const_iterator
typedef typename list<_Tp,_Alloc>::const_iterator const_iterator;
const_iterator __end1 = __x.end();
const_iterator __end2 = __y.end(); const_iterator __i1 = __x.begin();
const_iterator __i2 = __y.begin();
while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
++__i1;
++__i2;
}
return __i1 == __end1 && __i2 == __end2;
} template <class _Tp, class _Alloc>
inline bool operator<(const list<_Tp,_Alloc>& __x,
const list<_Tp,_Alloc>& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
} template <class _Tp, class _Alloc>
template <class _InputIter>
void
list<_Tp, _Alloc>::_M_insert_dispatch(iterator __position,
_InputIter __first, _InputIter __last,
__false_type)
{
for ( ; __first != __last; ++__first)
insert(__position, *__first);
} template <class _Tp, class _Alloc>
void
list<_Tp, _Alloc>::_M_fill_insert(iterator __position,
size_type __n, const _Tp& __x)
{
for ( ; __n > 0; --__n)
insert(__position, __x);
} template <class _Tp, class _Alloc>
typename list<_Tp,_Alloc>::iterator list<_Tp, _Alloc>::erase(iterator __first,
iterator __last)
{
while (__first != __last)
erase(__first++);
return __last;
} template <class _Tp, class _Alloc>
void list<_Tp, _Alloc>::resize(size_type __new_size, const _Tp& __x)
{
iterator __i = begin();
size_type __len = 0;
for ( ; __i != end() && __len < __new_size; ++__i, ++__len); if (__len == __new_size) ///__new_size <= this->size()
erase(__i, end());
else /// __new_size > this->size()
insert(end(), __new_size - __len, __x);
} template <class _Tp, class _Alloc>
list<_Tp, _Alloc>& list<_Tp, _Alloc>::operator=(const list<_Tp, _Alloc>& __x)
{
if (this != &__x) {
iterator __first1 = begin();
iterator __last1 = end();
const_iterator __first2 = __x.begin();
const_iterator __last2 = __x.end(); ///先挨个赋值
while (__first1 != __last1 && __first2 != __last2)
*__first1++ = *__first2++; if (__first2 == __last2) ///x.size() <= this->size()
erase(__first1, __last1);
else ///x.size() > this->size()
insert(__last1, __first2, __last2);
}
return *this;
} template <class _Tp, class _Alloc>
void list<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val) {
iterator __i = begin();
for ( ; __i != end() && __n > 0; ++__i, --__n)
*__i = __val;
if (__n > 0)
insert(end(), __n, __val);
else
erase(__i, end());
} template <class _Tp, class _Alloc>
template <class _InputIter>
void
list<_Tp, _Alloc>::_M_assign_dispatch(_InputIter __first2, _InputIter __last2,
__false_type)
{
iterator __first1 = begin();
iterator __last1 = end();
for ( ; __first1 != __last1 && __first2 != __last2; ++__first1, ++__first2)
*__first1 = *__first2;
if (__first2 == __last2)
erase(__first1, __last1);
else
insert(__last1, __first2, __last2);
} template <class _Tp, class _Alloc>
void list<_Tp, _Alloc>::remove(const _Tp& __value)
{
iterator __first = begin();
iterator __last = end();
while (__first != __last) {
iterator __next = __first;
++__next;
if (*__first == __value) erase(__first);
__first = __next;
}
} template <class _Tp, class _Alloc>
void list<_Tp, _Alloc>::unique()
{
iterator __first = begin();
iterator __last = end();
if (__first == __last) return;
iterator __next = __first;
while (++__next != __last) {
if (*__first == *__next)
erase(__next);
else
__first = __next; __next = __first;
}
} ///将两个非递增排序的链表合并为一个非递增排序的链表
///合并后x链表为空
template <class _Tp, class _Alloc>
void list<_Tp, _Alloc>::merge(list<_Tp, _Alloc>& __x)
{
iterator __first1 = begin();
iterator __last1 = end();
iterator __first2 = __x.begin();
iterator __last2 = __x.end();
while (__first1 != __last1 && __first2 != __last2)
if (*__first2 < *__first1) {
iterator __next = __first2;
transfer(__first1, __first2, ++__next);
__first2 = __next;
}
else
++__first1;
if (__first2 != __last2) transfer(__last1, __first2, __last2);
} ///从指针p開始,将list翻转
inline void __List_base_reverse(_List_node_base* __p)
{
_List_node_base* __tmp = __p;
do {
__STD::swap(__tmp->_M_next, __tmp->_M_prev);
__tmp = __tmp->_M_prev; /// Old next node is now prev. } while (__tmp != __p); ///因为是循环链表,故指针再次指向p时,说明list翻转完毕
} template <class _Tp, class _Alloc>
inline void list<_Tp, _Alloc>::reverse()
{
__List_base_reverse(this->_M_node);
} ///因为STL sort算法要求必须为随机迭代器,因此list实现了自己的专用sort算法
///该算法採用的是归并排序的思想
template <class _Tp, class _Alloc>
void list<_Tp, _Alloc>::sort()
{
/// Do nothing if the list has length 0 or 1.
if (_M_node->_M_next != _M_node && _M_node->_M_next->_M_next != _M_node) {
list<_Tp, _Alloc> __carry;
list<_Tp, _Alloc> __counter[64];
int __fill = 0;
while (!empty()) { __carry.splice(__carry.begin(), *this, begin()); ///__carry得到list第一个元素
int __i = 0; ///此循环将counter[__fill]之前全部非空链表合并为一个链表
while(__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry); ///此时__carry为空
__carry.swap(__counter[__i++]); ///此时__counter[i]为空,i变为i+1
}
__carry.swap(__counter[__i]); ///至此处i之前的全部链表均被合并至__counter[i]
if (__i == __fill) ++__fill;
} for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1]); swap(__counter[__fill-1]);
}
} template <class _Tp, class _Alloc> template <class _Predicate>
void list<_Tp, _Alloc>::remove_if(_Predicate __pred)
{
iterator __first = begin();
iterator __last = end();
while (__first != __last) {
iterator __next = __first;
++__next; ///必须先得到下一个节点位置,再删除当前结点,否则将无法找到下一个结点
if (__pred(*__first)) erase(__first);
__first = __next;
}
} template <class _Tp, class _Alloc> template <class _BinaryPredicate>
void list<_Tp, _Alloc>::unique(_BinaryPredicate __binary_pred)
{
iterator __first = begin();
iterator __last = end();
if (__first == __last) return;
iterator __next = __first;
while (++__next != __last) {
if (__binary_pred(*__first, *__next))
erase(__next);
else
__first = __next;
__next = __first;
}
} template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
void list<_Tp, _Alloc>::merge(list<_Tp, _Alloc>& __x,
_StrictWeakOrdering __comp)
{
iterator __first1 = begin();
iterator __last1 = end();
iterator __first2 = __x.begin();
iterator __last2 = __x.end();
while (__first1 != __last1 && __first2 != __last2)
if (__comp(*__first2, *__first1)) {
iterator __next = __first2;
transfer(__first1, __first2, ++__next);
__first2 = __next;
}
else
++__first1;
if (__first2 != __last2) transfer(__last1, __first2, __last2);
} template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
void list<_Tp, _Alloc>::sort(_StrictWeakOrdering __comp)
{
/// Do nothing if the list has length 0 or 1.
if (_M_node->_M_next != _M_node && _M_node->_M_next->_M_next != _M_node) {
list<_Tp, _Alloc> __carry;
list<_Tp, _Alloc> __counter[64];
int __fill = 0;
while (!empty()) {
__carry.splice(__carry.begin(), *this, begin());
int __i = 0;
while(__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry, __comp);
__carry.swap(__counter[__i++]);
}
__carry.swap(__counter[__i]);
if (__i == __fill) ++__fill;
} for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1], __comp);
swap(__counter[__fill-1]);
}
}
C++ STL源代码学习(list篇)的更多相关文章
- STL源代码学习(vector篇)
#include <concept_checks.h> #include<stl_allocate.h> /// The vector base class's constru ...
- C++ STL源代码学习(map,set内部heap篇)
stl_heap.h ///STL中使用的是大顶堆 /// Heap-manipulation functions: push_heap, pop_heap, make_heap, sort_heap ...
- C++ STL源代码学习之算法篇
///因为篇幅太长,因此,删去了非常多接口,仅仅分析了内部实现,算法对迭代器的要求也被删去 /// search. template <class _ForwardIter1, class _F ...
- C++STL源代码学习(之slist篇)
///stl_slist.h ///list为双向循环链表,slist为单向链表.某些操作效率更高 ///slist是SGI额外提供的单向链表,不属于C++标准 struct _Slist_node_ ...
- C++ STL 源代码学习(之deque篇)
stl_deque.h /** Class invariants: * For any nonsingular iterator i: * i.node is the address of an el ...
- STL源代码学习--vector用法汇总
一.容器vector 使用vector你必须包含头文件<vector>: #include<vector> 型别vector是一个定义于namespace std内的templ ...
- [转]C++学习–基础篇(书籍推荐及分享)
C++入门 语言技巧,性能优化 底层硬货 STL Boost 设计模式 算法篇 算起来,用C++已经有七八年时间,也有点可以分享的东西: 以下推荐的书籍大多有电子版.对于技术类书籍,电子版并不会带来一 ...
- struts2源代码学习之初始化(一)
看struts2源代码已有一段时日,从今天開始,就做一个总结吧. 首先,先看看怎么调试struts2源代码吧,主要是下面步骤: 使用Myeclipse创建一个webproject 导入struts2须 ...
- [Java] LinkedList / Queue - 源代码学习笔记
简单地画了下 LinkedList 的继承关系,如下图.只是画了关注的部分,并不是完整的关系图.本博文涉及的是 Queue, Deque, LinkedList 的源代码阅读笔记.关于 List 接口 ...
随机推荐
- Chrome下flash无法显示多个的问题。
$(document).ready(function(){ if(window.navigator.appVersion.match(/Chrome/)) { jQuery('object').eac ...
- 【Sets】使用Google Guava工程中Sets工具包,实现集合的并集/交集/补集/差集
获取两个txt文档的内容~存储进集合中求集合的并集/交集/补集/差集 package com.sxd.readLines.aboutDB; import java.io.BufferedReader; ...
- 四种有能力取代Cookies的客户端Web存储方案
目前在用户的网络浏览器中保存大量数据需要遵循几大现有标准,每一种标准都拥有自己的优势.短板.独特的W3C标准化状态以及浏览器支持级别.但无论如何,这些标准的实际表现都优于广泛存在的cookies机制. ...
- mysql 碎片清理
在MySQL中,我们经常会使用VARCHAR.TEXT.BLOB等可变长度的文本数据类型.不过,当我们使用这些数据类型之后,我们就不得不做一些额外的工作——MySQL数据表碎片整理. 那么,为什么在使 ...
- mac -- 安装OpenCV
brew install opencv #这个装的是3.4 brew unlink opencv # 取消关联 brew install opencv@2 # 安装2.X的版本
- 15.同步类容器Vector
同步类容器1 1.线程都是安全的. 2.在某些场景下需要加锁来保护“复合操作” a.迭代:反复去访问元素.遍历完容器所有的元素 b.跳转:根据下标制定去访问查找元素 c.条件运算 3.复合操作在多线程 ...
- 二十四种设计模式:迭代器模式(Iterator Pattern)
迭代器模式(Iterator Pattern) 介绍提供一种方法顺序访问一个聚合对象中各个元素,而又不需暴露该对象的内部表示. 示例有一个Message实体类,某聚合对象内的各个元素均为该实体对象,现 ...
- sql 改动表以及表字段
用SQL语句加入删除改动字段 1.添加字段 alter table docdsp add dspcode char(200) alter table tbl add meet ...
- 吐血整理 Delphi系列书籍 118本(全)
Delphi 教程 系列书籍 网友(老帅)整理 001_<Delhpi6数据库设计思想与实践> 002_<Delphi6应用开发指南> 003_<Delphi6开发人员指 ...
- Hibernate简介与实例
一.Hibernate简介 1.什么是Hibernate? Hibernate是数据持久层的一个轻量级框架.数据持久层的框架有很多比如:iBATIS,myBatis,Nhibernate,Siena等 ...